Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical tailoring

Levis J, Menkir GM, Rabitz H. 2001. Selective bond dissociation and re-arrangement with optically tailored, strong-field laser pulses . Science 292(5517) 709-713. [Pg.474]

JS Liu, A Ignatiev. Optical tailoring of solar absorbers by ion implantation. Solar Energy Mater 13 399, 1986. [Pg.319]

Quaternary Ga In j.As jPj, grown on InP is of major importance to fibre-optic communications. In quaternary compounds, both the gap and the lattice constant can be tailored by changing the chemical composition. In thick layers, in order to avoid the generation of strain-induced defects, care must be taken in adjusting the ratio of x and v to maintain the lattice-matched composition x = 2.2v. The available gaps range from 1.34 eV in InP to -0.75 eV in... [Pg.2880]

Because of the capacity to tailor select polymer properties by varying the ratio of two or more components, copolymers have found significant commercial appHcation in several product areas. In fiber-spinning, ie, with copolymers such as nylon-6 in nylon-6,6 or the reverse, where the second component is present in low (<10%) concentration, as well as in other comonomers with nylon-6,6 or nylon-6, the copolymers are often used to control the effect of sphemUtes by decreasing their number and probably their size and the rate of crystallization (190). At higher ratios, the semicrystalline polyamides become optically clear, amorphous polymers which find appHcations in packaging and barrier resins markets (191). [Pg.238]

Glaze coatings (58) are appHed to dry or bisque-fired clay ceramics to form a strong, impermeable surface that is aesthetically pleasing. Protective ceramic coatings can also be deposited by CVD (68,90). Plasma activated CVD has been used extensively to produce diamond and diamondlike films. Diamond films can also be used to make optical coatings with a tailored refractive index. [Pg.313]

Since multiple electrical and optical functionality must be combined in the fabrication of an OLED, many workers have turned to the techniques of molecular self-assembly in order to optimize the microstructure of the materials used. In turn, such approaches necessitate the incorporation of additional chemical functionality into the molecules. For example, the successive dipping of a substrate into solutions of polyanion and polycation leads to the deposition of poly-ionic bilayers [59, 60]. Since the precursor form of PPV is cationic, this is a very appealing way to tailor its properties. Anionic polymers that have been studied include sulfonatcd polystyrene [59] and sulfonatcd polyanilinc 159, 60]. Thermal conversion of the precursor PPV then results in an electroluminescent blended polymer film. [Pg.223]

The pace of development has increased with the commercialization of more engineering plastics and high performance plastics that were developed for load-bearing applications, functional products, and products with tailored property distributions. Polycarbonate compact discs, for example, are molded into a very simple shape, but upon characterization reveal a distribution of highly complex optical properties requiring extremely tight dimension and tolerance controls (3,223). [Pg.466]

The m-V and II-VI semiconductor compounds have excellent optical properties and are the most important group of optoelectronic materials, which are all produced by CVD for many optoelectronic applications. The properties of these materials and their CVD reactions are reviewed in Ch. 12, Secs. 3.0 and 4.0 and Ch. 13, Sec. 6.0. It is possible to tailor the bandgap, by the proper combination of these materials, to suit any given application (See Fig. 13.2 of Ch. 13). [Pg.386]

In 1996, Wegner et al. published the synthesis of poly(oligophenylenevinyle-ne)s (96), consisting of biphenylene-, terphenylene- and quinquephenylene moieties as aromatic building blocks, via Suzuki-type aryl-aryl cross coupling of AA/BB-type monomers [121]. By judicious choice of the arylene moieties, the optical properties of the resulting polymers can be tailored within a wide range. [Pg.208]

Plasma Synthesis The use of plasma methods has lead to a new range of materials having unique properties. An example is the family of amorphous elemental hydrides (eg cr-C H Of -Si H or-P H) which contain a variable proportion of H from almost zero to 50 atomic %. The carbon films, known variously as "hard carbon", "diamond-like carbon", " a-carbon" etc (9 ) - These layers are of considerable interest because of their optical and abrasion-resistant properties etc (Table I). The properties of these Gr-carbon films, can be tailored by modifying the plasma parameters. [Pg.314]

There are no clear advantages in terms of functional performance between the two classes of dyes, except that phthalocyanines are generally more light stable but tend to be more expensive to synthesize and modify. Phthalocyanine dyes are not suitable for DVD-R media, since the main chromophore cannot readily be modified to produce a sufficiently large hypsochromic shift. Other dyes potentially suitable for DVD-R include metal azo complexes, quinophthalones, and diphenyl-methanes. The cyanine dyes are particularly useful as they can be readily modified to tailor the optical absorbance requirements for all current optical disk recording applications.199... [Pg.610]

Close to silica fibres are silicate fibres drawn from optical glasses. Silicate fibres are typically applicable in the visible spectral region. Their optical losses in the visible region usually reach much higher values than silica fibres - at least 102dB/km. On the other hand, the refractive index can be tailored in a large interval (from 1.5 for the BK-class to 1.95 for the... [Pg.64]


See other pages where Optical tailoring is mentioned: [Pg.263]    [Pg.263]    [Pg.1264]    [Pg.2895]    [Pg.392]    [Pg.463]    [Pg.44]    [Pg.248]    [Pg.260]    [Pg.260]    [Pg.536]    [Pg.545]    [Pg.389]    [Pg.336]    [Pg.226]    [Pg.63]    [Pg.79]    [Pg.15]    [Pg.73]    [Pg.50]    [Pg.169]    [Pg.149]    [Pg.126]    [Pg.40]    [Pg.169]    [Pg.170]    [Pg.236]    [Pg.282]    [Pg.530]    [Pg.148]    [Pg.253]    [Pg.157]    [Pg.106]    [Pg.232]    [Pg.60]    [Pg.63]    [Pg.70]    [Pg.74]    [Pg.115]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Tailored

Tailoring

© 2024 chempedia.info