Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical activity control

Comments The diene A is symmetrical so it doesn t matter which double bond is attacked by the carbene. On the other hand, it may be difficult to stop carbene addition to the second double bond. The only control over the stereochemistry will be that the trans compound we want is more stable. Japanese chemists have recently synthesised optically active trans chrysanthemic acid by this route (Tetrahedron Letters. 1977, 2599). [Pg.115]

Strategy Problem 7 Synthesis of a single enantiomer. Many compounds such as pharmaceuticals, flavourings, and insect control chemicals must not only have the right relative stereochemistry but must be optically active too if tliey are to be of any use. Consider the strategy of synthesising one enantiomer ... [Pg.134]

The 7, i5-unsaturated alcohol 99 is cyclized to 2-vinyl-5-phenyltetrahydro-furan (100) by exo cyclization in aqueous alcohol[124]. On the other hand, the dihydropyran 101 is formed by endo cyclization from a 7, (5-unsaturated alcohol substituted by two methyl groups at the i5-position. The direction of elimination of /3-hydrogen to give either enol ethers or allylic ethers can be controlled by using DMSO as a solvent and utilized in the synthesis of the tetronomycin precursor 102[125], The oxidation of the optically active 3-alkene-l,2-diol 103 affords the 2,5-dihydrofuran 104 in high ee. It should be noted that /3-OH is eliminated rather than /3-H at the end of the reac-tion[126]. [Pg.35]

Certain state highway authorities are studyiag the use of ftber-reiaforced polymers, typically thermosets such as epoxy or unsaturated polyester, for bridge constmction. On an even more futuristic scale, fiber optics that employ polymeric jacketing and, ia some cases, optically active polymeric cores, may someday be employed ia place of wines for home security systems, climate control, etc (10,91). [Pg.338]

The configuration of the amine was retained, except in the case of amino acid derivatives, which racemized at the stage of the pyridinium salt product. Control experiments showed that, while the starting amino acid was configurationally stable under the reaction conditions, the pyridinium salt readily underwent deuterium exchange at the rz-position in D2O. In another early example, optically active amino alcohol 73 and amino acetate 74 provided chiral 1,4-dihydronicotinamide precursors 75 and 76, respectively, upon reaction with Zincke salt 8 (Scheme 8.4.24). The 1,4-dihydro forms of 75 and 76 were used in studies on the asymmetric reduction of rz,>S-unsaturated iminium salts. [Pg.366]

Controlled racemization of optically active heterocycles 97T9417. [Pg.208]

Perhydro derivatives of pyrido[l,2-7)][l,2]oxazines are frequently applied in the total synthesis of various alkaloids to control the stereochemistry, and pyrido[l,2-c][l,3]oxazines and [l,3]oxazino[3,4-u]quinolines were also used in the stereoselective syntheses of different alkaloids. Perhydropyrido[l,2-c][l,3]oxazines and their benzologs are formed form 2-(2-hydroxyethyl) piperidines and from their benzologs to justify the stereochemistry of 2-(2-hydroxyethyl) derivatives. Different optically active pipecolic acids can be prepared via 4-phenylperhydropyrido[2,l-c][l,4]oxazin-l-ones. [Pg.224]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

Guidance on specifications is divided into universal tests/criteria which are considered generally applicable to all new substances/products and specific tests/criteria which may need to be addressed on a case-by-case basis when they have an impact on the quality for batch control. Tests are expected to follow the ICH guideline on analytical validation (Section 13.5.4). Identification of the drug substance is included in the universal category, and such a test must be able discriminate between compounds of closely related structure which are likely to be present. It is acknowledged here that optically active substances may need specific identification testing or performance of a chiral assay in addition to this requirement. [Pg.334]

A cursory inspection of key intermediate 8 (see Scheme 1) reveals that it possesses both vicinal and remote stereochemical relationships. To cope with the stereochemical challenge posed by this intermediate and to enhance overall efficiency, a convergent approach featuring the union of optically active intermediates 18 and 19 was adopted. Scheme 5a illustrates the synthesis of intermediate 18. Thus, oxidative cleavage of the trisubstituted olefin of (/ )-citronellic acid benzyl ester (28) with ozone, followed by oxidative workup with Jones reagent, affords a carboxylic acid which can be oxidatively decarboxylated to 29 with lead tetraacetate and copper(n) acetate. Saponification of the benzyl ester in 29 with potassium hydroxide provides an unsaturated carboxylic acid which undergoes smooth conversion to trans iodolactone 30 on treatment with iodine in acetonitrile at -15 °C (89% yield from 29).24 The diastereoselectivity of the thermodynamically controlled iodolacto-nization reaction is approximately 20 1 in favor of the more stable trans iodolactone 30. [Pg.239]

Treatment of the optically active formaldehyde dithioacetal monoxide with ethyl benzoate in the presence of sodium hydride gives the benzoylated product as a diastereomeric mixture in a thermodynamically controlled (65 35) ratio66. [Pg.647]

Very few optically active cyanohydrins, derived from ketones, are described in the literature. High diastcrcosclectivity is observed for the substrate-controlled addition of hydrocyanic acid to 17-oxosteroids27 and for the addition of trimethyl(2-propenyl)silane to optically active acyl cyanides28. The enantioselective hydrolysis of racemic ketone cyanohydrin esters with yeast cells of Pichia miso occurs with only moderate chemical yields20. [Pg.669]

In Ugi four-component reactions (for mechanism, see Section 1.4.4.1.) all four components may potentially serve as the stereodifferentiating tool65. However, neither the isocyanide component nor the carboxylic acid have pronounced effects on the overall stereodiscrimination60 66. As a consequence, the factors influencing the stereochemical course of Ugi reactions arc similar to those in Strecker syntheses. The use of chiral aldehydes is commonly found in substrate-controlled syntheses whereas the asymmetric synthesis of new enantiomerically pure compounds via Ugi s method is restricted to the application of optically active amines as the chiral auxiliary group. [Pg.795]

A variety of chiral amides as well as oxazolidones388 and imidazolidones389,390 may easily be prepared from amino alcohols that are derived from amino acids391 392. The addition of the lithium enolates of these amides under kinetically controlled conditions to a,/i-unsaturated esters yields optically active pentanedioates. Both syn- and //-5-amino-5-oxopcntanoates may be obtained with good diastereomeric ratios192. [Pg.974]

Optically active y-alkoxycyclopentenones have become popular in the diastereoselective synthesis of hms-3,4-disubstituted cyclopentanones. The Michael addition to these cyclic enones catalyzed by sodium ethoxide in ethanol277 or by potassium tm-butoxide278 279 proceeds under kinetic control trans with respect to the y-substituent. [Pg.990]

The crossed polarizer effects of both types are used in analysis work. The concentration of optically active organic materials is determined by the degree of rotation. In plastic processing the residual strains in molded materials as well as the degree of orientation of polymers is determined by the effect on polarized light. Crossed polarizers are used with special wave plates to control the amount of light that passes through an optical system. [Pg.235]

The study of optical isomers has shown a similar development. First it was shown that the reduction potentials of several meso and racemic isomers were different (Elving et al., 1965 Feokstistov, 1968 Zavada et al., 1963) and later, studies have been made of the ratio of dljmeso compound isolated from electrolyses which form products capable of showing optical activity. Thus the conformation of the products from the pinacolization of ketones, the reduction of double bonds, the reduction of onium ions and the oxidation of carboxylic acids have been reported by several workers (reviewed by Feokstistov, 1968). Unfortunately, in many of these studies the electrolysis conditions were not controlled and it is therefore too early to draw definite conclusions about the stereochemistry of electrode processes and the possibilities for asymmetric syntheses. [Pg.171]

This is the first example of a reaction for which the presence of a chelating ligand was observed to facilitate rather than retard metal-catalysed epoxidation (Gao et al., 1987). It was found that the use of molecular sieves greatly improves this process by removing minute amounts of water present in the reaction medium. Water was found to deactivate the catalyst. All these developments led to an improved catalytic version that allows a five-fold increased substrate concentration relative to the stoichiometric method. Sensitive water-soluble, optically active glycidols can be prepared in an efficient manner by an in situ derivatisation. This epoxidation method appears to be competitive with enzyme-catalysed processes and was applied in 1981 for the commercial production of the gypsy moth pheromone, (-1-) disparlure, used for insect control (Eqn. (25)). [Pg.178]

Moreover, the reaction with Y = OCH3 and the stereochemical control of analogous hex-5-enyl radical cyclizations has also been studied. This method constitutes part of a synthetic route from carbohydrates to optically active carbocycles.[74],[75]... [Pg.357]

A qualitatively new approach to the surface pretreatment of solid electrodes is their chemical modification, which means a controlled attachment of suitable redox-active molecules to the electrode surface. The anchored surface molecules act as charge mediators between the elctrode and a substance in the electrolyte. A great effort in this respect was triggered in 1975 when Miller et al. attached the optically active methylester of phenylalanine by covalent bonding to a carbon electrode via the surface oxygen functionalities (cf. Fig. 5.27). Thus prepared, so-called chiral electrode showed stereospecific reduction of 4-acetylpyridine and ethylph-enylglyoxylate (but the product actually contained only a slight excess of one enantiomer). [Pg.330]


See other pages where Optical activity control is mentioned: [Pg.149]    [Pg.149]    [Pg.299]    [Pg.240]    [Pg.515]    [Pg.223]    [Pg.38]    [Pg.283]    [Pg.394]    [Pg.331]    [Pg.187]    [Pg.247]    [Pg.389]    [Pg.315]    [Pg.426]    [Pg.811]    [Pg.63]    [Pg.65]    [Pg.1235]    [Pg.165]    [Pg.165]    [Pg.114]    [Pg.206]    [Pg.420]    [Pg.424]    [Pg.47]    [Pg.391]    [Pg.340]    [Pg.565]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Activation control

Active controls

Control optical

Controlling activities

© 2024 chempedia.info