Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins naphtha

Isoforming a process in which olefinic naphtha is contacted with an alumina catalyst at high temperature and low pressure to produce isomers of higher octane number. [Pg.439]

The FTS converts synthesis gas into mostly liquid hydrocarbons [12-15]. Depending on the origin of the synthesis gas, the overall process from carbon feedstock to liquid product is called gas-to-liquids (GTL), coal to liquids (CTL), or biomass to liquids (BTL). The product spectrum, however, is broader than liquid hydrocarbons alone and can include methane and alkanes, C H2 +2 (with n from 1 — 100), alkenes or olefins (C H2 n > 2), and to a lesser extent, oxygenated products such as alcohols. Hence the FTS offers the opportunity to convert gas, coal, or biomass-derived syngas into transportation fuels, such as gasoline, jet fuel, and diesel oil, and chemicals, such as olefins, naphtha, and waxes. The reactions need a catalyst, which in commercial applications is either based on cobalt or iron. [Pg.446]

One variant of this route is the use of ZSM-5 family zeolites to interconvert olefins this is broadly similar to the Superflex process. The usual approach is to feed a high olefin (olefinic naphtha) to a fixed-bed catalyst operating at a relatively high temperature (>400°C). This establishes an equilibrium favouring lighter olefins and in particular propylene. One proposal is to use C4 and C5 olefins to generate ethylene and propylene . [Pg.185]

Shaw Energy Chemicals C -C Olefins Naphtha, VGO, residue Deep Catalytic Cracking (DCC) process to make light olefins, C -C, primarily propylene. 16 2008... [Pg.292]

Refining or petrochemical Steam distillation tterofan olefinic naphtha-type hydrocarbon fe Bottom sectkm was oversized and qier-ated at low rates. Sqreration was poor because of valve tray weeping. Iruseas-ing loadings solved it ... [Pg.616]

We cite isomerization of Cs-Ce paraffinic cuts, aliphatic alkylation making isoparaffinic gasoline from C3-C5 olefins and isobutane, and etherification of C4-C5 olefins with the C1-C2 alcohols. This type of refinery can need more hydrogen than is available from naphtha reforming. Flexibility is greatly improved over the simple conventional refinery. Nonetheless some products are not eliminated, for example, the heavy fuel of marginal quality, and the conversion product qualities may not be adequate, even after severe treatment, to meet certain specifications such as the gasoline octane number, diesel cetane number, and allowable levels of certain components. [Pg.485]

Olefins are produced primarily by thermal cracking of a hydrocarbon feedstock which takes place at low residence time in the presence of steam in the tubes of a furnace. In the United States, natural gas Hquids derived from natural gas processing, primarily ethane [74-84-0] and propane [74-98-6] have been the dominant feedstock for olefins plants, accounting for about 50 to 70% of ethylene production. Most of the remainder has been based on cracking naphtha or gas oil hydrocarbon streams which are derived from cmde oil. Naphtha is a hydrocarbon fraction boiling between 40 and 170°C, whereas the gas oil fraction bods between about 310 and 490°C. These feedstocks, which have been used primarily by producers with refinery affiliations, account for most of the remainder of olefins production. In addition a substantial amount of propylene and a small amount of ethylene ate recovered from waste gases produced in petroleum refineries. [Pg.171]

In most of the rest of the world the olefins industry was originally based on naphtha feedstocks. Naphtha is the dominant olefins feedstock in Europe and Asia. In the middle 1980s several large olefins complexes were budt outside of the United States based on gas Hquids feedstocks, most notable in western Canada, Saudi Arabia, and Scotiand. In each case the driving force was the production of natural gas, perhaps associated with cmde oil production, which was in excess of energy demands. [Pg.171]

Fig. 2. Quarterly olefin feedstock prices, 1978—1991, for (D) ethane (+) propane (<)) light naphtha, and (A) naphtha. Fig. 2. Quarterly olefin feedstock prices, 1978—1991, for (D) ethane (+) propane (<)) light naphtha, and (A) naphtha.
The principal class of reactions in the FCC process converts high boiling, low octane normal paraffins to lower boiling, higher octane olefins, naphthenes (cycloparaffins), and aromatics. FCC naphtha is almost always fractionated into two or three streams. Typical properties are shown in Table 5. Properties of specific streams depend on the catalyst, design and operating conditions of the unit, and the cmde properties. [Pg.184]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

With this type of burner, a wide variety of raw materials, ranging from propane to naphtha, and heavier hydrocarbons containing 10—15 carbon atoms, can be used. In addition, the pecuhar characteristics of the different raw materials that can be used enable the simultaneous production of acetylene and ethylene (and heavier olefins) ia proportioas which can be varied within wide limits without requiring basic modifications of the burner. [Pg.388]

The main limitation to thermal conversion is that the products can be unstable. Thermal cracking at low pressure gives olefins, particularly in the naphtha fraction such olefins yield an unstable product that tends to form gum as well as heavier products that form sediments (5). [Pg.203]

Solvents. Petroleum naphtha is a generic term appHed to refined, pardy refined, or unrefined petroleum products. Naphthas are prepared by any of several methods, including fractionation of distillates or even cmde petroleum, solvent extraction, hydrocracking of distillates, polymerization of unsaturated (olefinic) compounds, and alkylation processes. Naphtha can also be a combination of product streams from more than one of these processes. [Pg.210]

The separation train of the plant is designed to recover important constituents present in the furnace effluent. The modem olefin plant must be designed to accommodate various feedstocks, ie, it usually is designed for feedstock flexibiUty in both the pyrolysis furnaces and the separation system (52). For example, a plant may crack feedstocks ranging from ethane to naphtha or naphtha to gas oils. [Pg.125]

When simple Hquids like naphtha are cracked, it may be possible to determine the feed components by gas chromatography combined with mass spectrometry (gc/ms) (30). However, when gas oil is cracked, complete analysis of the feed may not be possible. Therefore, some simple definitions are used to characterize the feed. When available, paraffins, olefins, naphthenes, and aromatics (PONA) content serves as a key property. When PONA is not available, the Bureau of Mines Correlation Index (BMCI) is used. Other properties like specific gravity, ASTM distillation, viscosity, refractive index. Conradson Carbon, and Bromine Number are also used to characterize the feed. In recent years even nuclear magnetic resonance spectroscopy has been... [Pg.434]

The combination of low residence time and low partial pressure produces high selectivity to olefins at a constant feed conversion. In the 1960s, the residence time was 0.5 to 0.8 seconds, whereas in the late 1980s, residence time was typically 0.1 to 0.15 seconds. Typical pyrolysis heater characteristics are given in Table 4. Temperature, pressure, conversion, and residence time profiles across the reactor for naphtha cracking are illustrated in Figure 2. [Pg.435]

In treating cracked stocks such as steam cracked naphtha or visbreaker naphtha, which are highly olefinic in nature, nickel molybdate or nickel tungstate catalysts are generally employed. These catalysts have much higher activity for olefin samration reactions than does cobalt molybdate. [Pg.68]


See other pages where Olefins naphtha is mentioned: [Pg.346]    [Pg.107]    [Pg.224]    [Pg.346]    [Pg.107]    [Pg.224]    [Pg.171]    [Pg.171]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.184]    [Pg.185]    [Pg.186]    [Pg.421]    [Pg.477]    [Pg.354]    [Pg.207]    [Pg.210]    [Pg.214]    [Pg.339]    [Pg.339]    [Pg.361]    [Pg.410]    [Pg.41]    [Pg.42]    [Pg.366]    [Pg.170]    [Pg.182]    [Pg.444]    [Pg.2099]    [Pg.54]    [Pg.54]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Naphtha

Naphtha olefins content

© 2024 chempedia.info