Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins sources

Olefin Sources. The choice of feedstock depends on the alcohol product properties desired, availabiUty of the olefin, and economics. A given producer may either process different olefins for different products or change feedstock for the same appHcation. Feedstocks beheved to be currentiy available are as follows. [Pg.458]

Polygas Olefins. Refinery propylene and butenes are polymerized with a phosphoric acid catalyst at 200°C and 3040—6080 kPa (30—60 atm) to give a mixture of branched olefins up to used primarily in producing plasticizer alcohols (isooctyl, isononyl, and isodecyl alcohol). Since the olefins are branched (75% have two or more CH groups) the alcohols are also branched. Exxon, BASE, Ruhrchemie (now Hoechst), ICl, Nissan, Getty Oil, U.S. Steel Chemicals (now Aristech), and others have all used this olefin source. [Pg.458]

Figure 8.5 U.S. production of olefins. Source Lowenheim Moran, Chemical and Engineering News, Chemical Economics Handbook, and Chemical Profiles)... Figure 8.5 U.S. production of olefins. Source Lowenheim Moran, Chemical and Engineering News, Chemical Economics Handbook, and Chemical Profiles)...
Discussion Point DPI At present the production of polyolefin materials is based almost exclusively on petroleum. However further increases in crude-oil prices might make other potential sources competitive. Identify three alternative olefin sources, formulate the essential chemical reactions necessary for each production process and try to assess advantages, disadvantages and relative likelihoods of industrial implementation for such processes. [Pg.223]

By fractionated distillation receipt one 54 g dimethyl-benzyl-carbinol (36 % yield) and 80 g dimethylbenzylcarbinyl-formate (45% yield related to olefin). Source Bernhagen 1982... [Pg.225]

CDAlkyPlus An improved alkylation method that allows operators to alkylate any concentration of isobutylene as much as 100% of the total olefin fraction. The process is said to provide considerable savings in operating and capital costs. It utilizes two commonly used refinery processes that allow inexpensive alkylation of isobutylene as the only olefin source. A simple isobutylene pretreatment process is used upstream of the low-temperature sulfuric acid alkylation process. Developed by CDTECH. [Pg.65]

Prospective Processes. There has been much effort invested in examining routes to acetic acid by olefin oxidation or from ethylene, butenes, or j -butyl acetate. No product from these sources is known to have reached the world market the cost of the raw materials is generally prohibitive. [Pg.69]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

The reaction mechanisms by which the VOCs are oxidized are analogous to, but much more complex than, the CH oxidation mechanism. The fastest reacting species are the natural VOCs emitted from vegetation. However, natural VOCs also react rapidly with O, and whether they are a net source or sink is determined by the natural VOC to NO ratio and the sunlight intensity. At high VOC/NO ratios, there is insufficient NO2 formed to offset the O loss. However, when O reacts with the internally bonded olefinic compounds, carbonyls are formed and, the greater the sunshine, the better the chance the carbonyls will photolyze and produce OH which initiates the O.-forming chain reactions. [Pg.370]

Other Dimer Olefins. Olefins for plasticizer alcohols are also produced by the dimerization of isobutene [115-11-7] 4 8 codimerization of isobutene and / -butene [25167-67-3]. These highly branched octenes lead to a highly branched isononyl alcohol [68526-84-1] product. BASE, Ruhrchemie, ICl, Nippon Oxocol, and others have used this source. [Pg.458]

Mobil MTG and MTO Process. Methanol from any source can be converted to gasoline range hydrocarbons using the Mobil MTG process. This process takes advantage of the shape selective activity of ZSM-5 zeoHte catalyst to limit the size of hydrocarbons in the product. The pore size and cavity dimensions favor the production of C-5—C-10 hydrocarbons. The first step in the conversion is the acid-catalyzed dehydration of methanol to form dimethyl ether. The ether subsequendy is converted to light olefins, then heavier olefins, paraffins, and aromatics. In practice the ether formation and hydrocarbon formation reactions may be performed in separate stages to faciHtate heat removal. [Pg.165]

Olefins are carbonylated in concentrated sulfuric acid at moderate temperatures (0—40°C) and low pressures with formic acid, which serves as the source of carbon monoxide (Koch-Haaf reaction) (187). Liquid hydrogen fluoride, preferably in the presence of boron trifluoride, is an equally good catalyst and solvent system (see Carboxylic acids). [Pg.563]

Worldwide, approximately 180, 000 t/yr acetylene product is recovered as a by-product within olefin plants. This source of acetylene is expected to increase as plant capacity and furnace temperature increase. The recovery may include compression and transfer of the acetylene product via pipelines directly to the downstream consumer. [Pg.391]

Substitution. In free-radical substitution, the olefin reacts with a free-radical source to form the allyl free radical, which in turn reacts with available reagent to produce both the final product and a new free radical. [Pg.436]

The introduction of metallocene and single-site polyethylene catalyst systems may eventually change the demand for higher olefins used as comonomers. Some sources indicate that their use will increase the demand for comonomers, but others feel that they will reduce comonomer use. At any rate, it is not expected that their introduction will have a significant effect on comonomer growth rates for the period 1992—1996 (see Olefin polymers). [Pg.441]

This ladical-geneiating reaction has been used in synthetic apphcations, eg, aioyloxylation of olefins and aromatics, oxidation of alcohols to aldehydes, etc (52,187). Only alkyl radicals, R-, are produced from aliphatic diacyl peroxides, since decarboxylation occurs during or very shortiy after oxygen—oxygen bond scission in the transition state (187,188,199). For example, diacetyl peroxide is well known as a source of methyl radicals (206). [Pg.124]

Linear alpha-olefins are the source of the largest volume of ahphatic amine oxides. The olefin reacts with hydrogen bromide in the presence of peroxide catalyst, to yield primary alkyl bromide, which then reacts with dimethylamine to yield the corresponding alkyl dimethyl amine. Fatty alcohols and fatty acids are also used to produce amine oxides (Fig. 1). [Pg.191]

Fatty amines are nitrogen derivatives of fatty acids, olefins, or alcohols prepared from natural sources, fats and oils, or petrochemical raw materials. Commercially available fatty amines consist of either a mixture of carbon chains or a specific chain length from C The amines are classified as... [Pg.217]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

Synthesis and Manufacture of Amines. The chemical and busiaess segments of amines (qv) and quaternaries are so closely linked that it is difficult to consider these separately. The majority of commercially produced amines origiaate from three amine raw materials natural fats and oils, a-olefins, and fatty alcohols. Most large commercial manufacturers of quaternary ammonium compounds are fully back-iategrated to at least one of these three sources of amines. The amines are then used to produce a wide array of commercially available quaternary ammonium compounds. Some iadividual quaternary ammonium compounds can be produced by more than one synthetic route. [Pg.381]

The ethylene feedstock used in most plants is of high purity and contains 200—2000 ppm of ethane as the only significant impurity. Ethane is inert in the reactor and is rejected from the plant in the vent gas for use as fuel. Dilute gas streams, such as treated fluid-catalytic cracking (FCC) off-gas from refineries with ethylene concentrations as low as 10%, have also been used as the ethylene feedstock. The refinery FCC off-gas, which is otherwise used as fuel, can be an attractive source of ethylene even with the added costs of the treatments needed to remove undesirable impurities such as acetylene and higher olefins. Its use for ethylbenzene production, however, is limited by the quantity available. Only large refineries are capable of deUvering sufficient FCC off-gas to support an ethylbenzene—styrene plant of an economical scale. [Pg.478]


See other pages where Olefins sources is mentioned: [Pg.144]    [Pg.142]    [Pg.167]    [Pg.103]    [Pg.79]    [Pg.27]    [Pg.144]    [Pg.142]    [Pg.167]    [Pg.103]    [Pg.79]    [Pg.27]    [Pg.171]    [Pg.174]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.276]    [Pg.162]    [Pg.476]    [Pg.438]    [Pg.473]    [Pg.101]    [Pg.214]    [Pg.218]    [Pg.346]    [Pg.374]    [Pg.118]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



© 2024 chempedia.info