Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of thorium

Cerium is a component of misch metal, which is extensively used in the manufacture of pyrophoric alloys for cigarette lighters. While cerium is not radioactive, the impure commercial grade may contain traces of thorium, which is radioactive. The oxide is an important constituent of incandescent gas mantles and is emerging as a hydrocarbon catalyst in self cleaning ovens. In this application it can be incorporated into oven walls to prevent the collection of cooking residues. [Pg.173]

Thorium occurs in thorite and in thorianite. Large deposits of thorium minerals have been reported in New England and elsewhere, but these have not yet been exploited. Thorium is now thought to be about three times as abundant as uranium and about as abundant as lead or molybdenum. Thorium is recovered commercially from the mineral monazite, which contains from 3 to 9% Th02 along with rare-earth minerals. [Pg.174]

Several methods are available for producing thorium metal it can be obtained by reducing thorium oxide with calcium, by electrolysis of anhydrous thorium chloride in a fused mixture of sodium and potassium chlorides, by calcium reduction of thorium tetrachloride mixed with... [Pg.174]

Radon-220 [22481 8-7], Rn, a decay product of thorium, was discovered by Owens and Rutherford in 1900. The more common radon-222, a decay product of radium, was discovered later in the same year and was isolated in 1902. [Pg.4]

At the beginning of the twentieth century, the incandescent mantle, utilising the candoluminescence of a mixture of thorium (95% weight) and cerium oxides was developed. The pyrophoricity of rare-earth metals led to the invention of the lighter flint made through the alloying of iron and mischmetal. Since that time, numerous other appHcations have developed to coincide with the availabiUty of the rare-earth compounds on an industrial scale and having a controlled purity. [Pg.547]

The homogeneous reactor experiment-2 (HRE-2) was tested as a power-breeder in the late 1950s. The core contained highly enriched uranyl sulfate in heavy water and the reflector contained a slurry of thorium oxide [1314-20-1J, Th02, in D2O. The reactor thus produced fissile uranium-233 by absorption of neutrons in thorium-232 [7440-29-1J, the essentially stable single isotope of thorium. Local deposits of uranium caused reactivity excursions and intense sources of heat that melted holes in the container (18), and the project was terrninated. [Pg.222]

Actinide Peroxides. Many peroxo compounds of thorium, protactinium, uranium, neptunium, plutonium, and americium are known (82,89). The crystal stmctures of a number of these have been deterrnined. Perhaps the best known are uranium peroxide dihydrate [1344-60-1/, UO 2H20, and, the uranium peroxide tetrahydrate [15737-4-5] UO 4H2O, which are formed when hydrogen peroxide is added to an acid solution of a uranyl salt. [Pg.96]

A full discussion of thorium electrochemistry is available (3). Thorium is generally more acidic than the lanthanides but less acidic than other light actinides, such as U, Np, and Pu, as expected from the larger Th" " ionic radius (108 pm). [Pg.35]

There are a number of minerals in which thorium is found. Thus a number of basic process flow sheets exist for the recovery of thorium from ores (10). The extraction of mona ite from sands is accompHshed via the digestion of sand using hot base, which converts the oxide to the hydroxide form. The hydroxide is then dissolved in hydrochloric acid and the pH adjusted to between 5 and 6, affording the separation of thorium from the less acidic lanthanides. Thorium hydroxide is dissolved in nitric acid and extracted using methyl isobutyl ketone or tributyl phosphate in kerosene to yield Th(N02)4,... [Pg.35]

Properties. Pure thorium metal is a dense, bright silvery metal having a very high melting point. The metal exists in two allotropic modifications. Thorium is a reactive, soft, and ductile metal which tarnishes slowly on exposure to air (12). Having poor mechanical properties, the metal has no direct stmctural appHcations. A survey of the physical properties of thorium is summarized in Table 1. Thorium metal is diamagnetic at room temperature, but becomes superconducting below 1.3—1.4 K. [Pg.36]

Most mineral acids react vigorously with thorium metal. Aqueous HCl attacks thorium metal, but dissolution is not complete. From 12 to 25% of the metal typically remains undissolved. A small amount of fluoride or fluorosiUcate is often used to assist in complete dissolution. Nitric acid passivates the surface of thorium metal, but small amounts of fluoride or fluorosiUcate assists in complete dissolution. Dilute HF, HNO, or H2SO4, or concentrated HCIO4 and H PO, slowly dissolve thorium metal, accompanied by constant hydrogen gas evolution. Thorium metal does not dissolve in alkaline hydroxide solutions. [Pg.37]

Oxo Ion Salts. Salts of 0x0 ions, eg, nitrate, sulfate, perchlorate, hydroxide, iodate, phosphate, and oxalate, are readily obtained from aqueous solution. Thorium nitrate is readily formed by dissolution of thorium hydroxide in nitric acid from which, depending on the pH of solution, crystalline Th(N02)4 5H20 [33088-17 ] or Th(N02)4 4H20 [33088-16-3] can be obtained (23). Thorium nitrate is very soluble in water and in a host of oxygen-containing organic solvents, including alcohols, ethers, esters, and ketones. Hydrated thorium sulfate, Th(S0 2 H20, where n = 9, 8, 6, or 4, is... [Pg.37]

Coordination Complexes. The coordination and organometaHic chemistry of thorium is dominated by the extremely stable tetravalent ion. Except in a few cases where large and stericaHy demanding ligands are used, lower thorium oxidation states are generally unstable. An example is the isolation of a molecular Th(III) complex [107040-62-0] Th[Tj-C H2(Si(CH2)3)2]3 (25). Reports (26) on the synthesis of soluble Th(II) complexes, such as... [Pg.37]

Phosphorus Donors. Phosphine coordination complexes of thorium are rare because the hard Th(IV) cation favors harder ligand donor types. The only stable thorium—phosphine coordination complexes isolated as of the mid-1990s contain the chelating ligand,... [Pg.38]

Complex salts of thorium fluorides have been generated by interaction of ThF with fluoride salts of aLkaU or other univalent cations under molten salt conditions. The general forms of these complexes are [ThF ] [15891 -02-8] ThFJ [1730048-0] and [ThF ] [56141-64-1], where typical countercations are LC, Na", K", Cs", NH" 4, and N2H" 3. Additional information on thorium fluorides can be found in the Hterature (81). [Pg.40]

Chlorides. Anhydrous ThCl [10026-08-1] has usually been prepared by direct interaction of thorium metal, hydride, or carbide with chlorine. [Pg.40]

CyclooctatetraenylCompounds. Sandwich-type complexes of cyclooctatetraene (COT), CgH g, are well known. The chemistry of thorium—COT complexes is similar to that of its Cp analogues in steric number and electronic configurations. Thorocene [12702-09-9], COT2Th, (16), the simplest of the COT derivatives, has been prepared by the interaction of ThCl [10026-08-1] and two equivalents of K CgHg. Thorocene derivatives with alkyl-, sdyl-, and aryl-substituted COT ligands have also been described. These compounds are thermally stable, air-sensitive, and appear to have substantial ionic character. [Pg.42]

Allyl Complexes. Allyl complexes of thorium have been known since the 1960s and are usually stabilized by cyclopentadienyl ligands. AEyl complexes can be accessed via the interaction of a thorium haUde and an aHyl grignard. This synthetic method was utilized to obtain a rare example of a naked aHyl complex, Th(Tj -C2H )4 [144564-74-9] which decomposes at 0°C. This complex, when supported on dehydroxylated y-alumina, is an outstanding heterogeneous catalyst for arene hydrogenation and rivals the most active platinum metal catalysts in activity (17,18). [Pg.43]

Total reserves of thorium at commercial price in 1995 was estimated to be >2 x 10 metric tons of Th02 (H)- Thorium is a potential fuel for nuclear power reactors. It has a 3—4 times higher natural abundance than U and the separation of the product from Th is both technically easier and less expensive than the enrichment of in However, side-reaction products, such as and the intense a- and y-active decay products lead to a high... [Pg.43]

S. Ahrland and co-workers, eds., Gmelin Handbook of Inorganic Chemistg, Thorium, Suppl Hoi D1, Properties of Thorium Ions in Solutions, 8th ed., Springer-Vedag, Berlin, 1988. [Pg.44]


See other pages where Of thorium is mentioned: [Pg.88]    [Pg.396]    [Pg.150]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.175]    [Pg.91]    [Pg.247]    [Pg.705]    [Pg.216]    [Pg.224]    [Pg.57]    [Pg.460]    [Pg.35]    [Pg.35]    [Pg.35]    [Pg.36]    [Pg.36]    [Pg.36]    [Pg.37]    [Pg.37]    [Pg.38]    [Pg.38]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.41]    [Pg.41]    [Pg.44]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



Compounds of Thorium and Uranium

Concentration and Extraction of Thorium

Cyclopentadienyl complexes of uranium, thorium and actinide metals

Decay of thorium

Determination of thorium isotopes

Diffusion of Nitrogen in Thorium

Extraction of Thorium

Formation constants of thorium sulphate complexes

Geochemistry segregation of uranium from thorium

Hydrides of thorium

Hydrolysis of thorium

Isotopes of thorium

Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic Fluorides

Nitridation of Thorium

Organometallic complexes of thorium and uranium

Purification of Thorium

Radioactivity of thorium

Removal of Thorium

Solubility of thorium oxides and hydroxides

Summary of selected values for the aqueous thorium fluoride species

Ternary Nitrides of Thorium with Other Metals

Thorium segregation of uranium from

Thorium, powder removal of, in extraction

Uses of Thorium

© 2024 chempedia.info