Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleosome chromatin

The native form of chromatin in cells assumes a higher order stmcture called the 30-nm filament, which adopts a solenoidal stmcture where the 10-nm filament is arranged in a left-handed cod (Fig. 5). The negative supercoiling of the DNA is manifested by writhing the hehcal axis around the nucleosomes. Chromatin stmcture is an example of toroidal winding whereas eukaryotic chromosomes are linear, the chromatin stmctures, attached to a nuclear matrix, define separate closed-circular topological domains. [Pg.253]

The broad field of nucleic acid structure and dynamics has undergone remarkable development during the past decade. Especially in regard to dynamics, modem fluorescence methods have yielded some of the most important advances. This chapter concerns primarily the application of time-resolved fluorescence techniques to study the dynamics of nucleic acid/dye complexes, and the inferences regarding rotational mobilities, deformation potentials, and alternate structures of nucleic acids that follow from such experiments. Emphasis is mainly on the use of time-resolved fluorescence polarization anisotropy (FPA), although results obtained using other techniques are also noted. This chapter is devoted mainly to free DNAs and tRNAs, but DNAs in nucleosomes, chromatin, viruses, and sperm are also briefly discussed. [Pg.137]

Keywords ATP, Nucleosome, Chromatin, Helicase, RAD54, Imitation Switch, Tumour... [Pg.30]

Less is known about the interaction of the nucleosomes between themselves or with free DNA. The nucleosome-nucleosome interaction has recently been parameterized by using the surface charge density of the known crystal structure [39] in a point-charge model [51]. While in that work only electrostatic interactions were considered and the quantitative influence of the histone tails on the interaction potential still remains obscure, simulations based on this potential allowed to predict an ionic-strength dependent structural transition of a 50-nucleosome chromatin fragment that occurred at a salt concentration compatible with known experimental data (Ref. [65], see below). [Pg.402]

Smulson M (1984) Poly (ADP-ribosylation) of nucleosomal chromatin. Electrophoretic and immunological methods. Methods in Enzymology 106 933-943... [Pg.216]

Fig. 5. Solenoid model of the 30-nm filament of chromatin, where the disks represent nucleosomes and the dark line unbound DNA. Fig. 5. Solenoid model of the 30-nm filament of chromatin, where the disks represent nucleosomes and the dark line unbound DNA.
If chromatin is swelled suddenly in water and prepared for viewing in the electron microscope, the nucleosomes are evident as beads on a string, dsDNA being the string (Figure 12.28). The structure of the histone octamer core has been determined by X-ray crystallography without DNA by E. N. Moudrianakis s laboratory (Figure 12.29) and wrapped with DNA by T. J. [Pg.379]

Chromatin is composed of nucleosomes, where each comprise 147 base pairs of DNA wrapped around an octamer oftwo copies of each histone H2A, H2B, H3, and H4. Nucleosomes are folded into higher-order structures that are stabilized by linker histones. Chromatin structure can be altered by enzymes that posttranslationally modify histones (e.g., through phosphorylation, acetylation, methylation, or ubiquitination) or by ATP-driven chromatin-remodeling complexes that alter nucleosome position and/or composition. [Pg.362]

Histones are small, basic proteins required to condense DNA into chromatin. They have been first described and named in 1884 by Albrecht Kossel. There are five main histones HI, H2A, H2B, H3 andH4. An octamer of core histones H2A, H2B, H3 andH4 is located inside a nucleosome, the central building block of chromatin, with about 150 base pairs of DNA wrapped around. The basic nature of histones, mediated by the high content of lysine and arginine residues, allows a direct interaction with the acidic phosphate back bone of DNA. The fifth histone HI is located outside at the junction between nucleosomes and is referred to as the linker histone. Besides the main histones, so-called histone variants are known, which replace core histones in certain locations like centromers. [Pg.591]

An enzyme activity ascribed to many coactivators, which transfers acetyl groups to lysine residues of histone tails of the nucleosomes and thereby facilitate their disruption and the opening of the chromatin. [Pg.592]

Enzyme activity ascribed to corepressors, which is the removal of acetyl groups from lysine residues of histone tails. Thereby the assembly of nucleosomes is maintained, which leads to a dense, transcriptional inactive chromatin structure. [Pg.595]

Histone tails are the N-terminal regions of histones which reach outside the nucleosomes. They are not essential for the formation in of nucleosomes but are required for the formation of higher-order chromatin structures. The histone tails are also known to be heavily posttranslationally modified by acetylation, phosphorylation, methylation, etc. and are important for the regulation of gene activity. [Pg.595]

The nucleosome represents the first level of DNA condensation and is the basic building block of all chromatin structures. It was discovered in 1973 and consists of a central histone octamer with about 150 base pairs of DNA wrapped around. [Pg.899]

The core unit of the chromatin, the nucleosome, consists of histones arranged as an octamer consisting of a (H3/ H4)2-tetramer complexed with two histone H2A/H2B dimers. Accessibility to DNA-binding proteins (for replication, repair, or transcription) is achieved by posttranslational modifications of the amino-termini of the histones, the histone tails phosphorylation, acetylation, methylation, ubiquitination, and sumoyla-tion. Especially acetylation of histone tails has been linked to transcriptional activation, leading to weakened interaction of the core complexes with DNA and subsequently to decondensation of chromatin. In contrast, deacetylation leads to transcriptional repression. As mentioned above, transcriptional coactivators either possess HAT activity or recruit HATs. HDACs in turn act as corepressors. [Pg.1228]

Figure 36-1. Electron micrograph of nucleosomes attached by strands of nucleic acid. (The bar represents 2.5 pm.) (Reproduced, with permission, from Oudet P, Gross-Bellard M, Chambon P Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 1975 4 281.)... Figure 36-1. Electron micrograph of nucleosomes attached by strands of nucleic acid. (The bar represents 2.5 pm.) (Reproduced, with permission, from Oudet P, Gross-Bellard M, Chambon P Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 1975 4 281.)...
When the histone octamer is mixed with purified, double-stranded DNA, the same x-ray diffraction pattern is formed as that observed in freshly isolated chromatin. Electron microscopic studies confirm the existence of reconstituted nucleosomes. Furthermore, the reconsti-mtion of nucleosomes from DNA and histones H2A, H2B, H3, and H4 is independent of the organismal or cellular origin of the various components. The histone HI and the nonhistone proteins are not necessary for the reconstitution of the nucleosome core. [Pg.315]

The assembly of nucleosomes is mediated by one of several chromatin assembly factors facilitated by histone chaperones, proteins such as the anionic nuclear protein nucleoplasmin. As the nucleosome is assembled, histones are released from the histone chaperones. Nucleosomes appear to exhibit preference for certain regions on specific DNA molecules, but the basis for this nonrandom distribution, termed phasing, is not completely... [Pg.315]

Figure 36-19. Supercoiling of DNA. A left-handed toroidal (solenoidal) supercoil, at left, will convert to a right-handed interwound supercoil, at right, when the cylindric core is removed. Such a transition is analogous to that which occurs when nucleosomes are disrupted by the high salt extraction of histones from chromatin. Figure 36-19. Supercoiling of DNA. A left-handed toroidal (solenoidal) supercoil, at left, will convert to a right-handed interwound supercoil, at right, when the cylindric core is removed. Such a transition is analogous to that which occurs when nucleosomes are disrupted by the high salt extraction of histones from chromatin.

See other pages where Nucleosome chromatin is mentioned: [Pg.211]    [Pg.475]    [Pg.495]    [Pg.267]    [Pg.203]    [Pg.207]    [Pg.521]    [Pg.302]    [Pg.497]    [Pg.190]    [Pg.28]    [Pg.108]    [Pg.211]    [Pg.475]    [Pg.495]    [Pg.267]    [Pg.203]    [Pg.207]    [Pg.521]    [Pg.302]    [Pg.497]    [Pg.190]    [Pg.28]    [Pg.108]    [Pg.253]    [Pg.379]    [Pg.380]    [Pg.540]    [Pg.592]    [Pg.593]    [Pg.594]    [Pg.1225]    [Pg.1228]    [Pg.141]    [Pg.142]    [Pg.393]    [Pg.394]    [Pg.455]    [Pg.314]    [Pg.316]    [Pg.316]    [Pg.316]    [Pg.318]    [Pg.326]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Chromatin

Chromatin fiber nucleosome stability

Histone acetylation. Toward an invariant of chromatin dynamics the ALk-per-nucleosome parameter

Nucleosome

Nucleosomes

© 2024 chempedia.info