Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear fuels plutonium

Fuels are those substances which undergo controlled chemical and nuclear reactions to evolve useful energy for heat or power. Chemical fuels are principally carbonaceous organic substances, such as petroleum, coal, and wood, which undergo combustion. Liquefied gases such as hydrogen and ammonia are also used. Nuclear fuels, plutonium and uranium, release nuclear energy on fission. [Pg.238]

Carriage of irradiated nuclear fuel, plutonium and high level radioactive wastes on vessels [V.9] Sea 1.5g 1.5g Ig up, 2g down... [Pg.319]

V.9] INTERNATIONAL MARITIME ORGANIZATION, International Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High Level Radioactive Wastes in Elasks on Board Ships (INF code). International Maritime Dangerous Goods Code, Supplement 1994, IMO, London (1994). [Pg.327]

Neutron-rich lanthanide isotopes occur in the fission of uranium or plutonium and ate separated during the reprocessing of nuclear fuel wastes (see Nuclearreactors). Lanthanide isotopes can be produced by neutron bombardment, by radioactive decay of neighboring atoms, and by nuclear reactions in accelerators where the rate earths ate bombarded with charged particles. The rare-earth content of solid samples can be determined by neutron... [Pg.541]

Predictions in the 1960s of the growth in nuclear power indicated the need for recycling (qv) of nuclear fuels. RadionucHdes involved are uranium-235, uranium-238 [24678-82-8] and plutonium-239. This last is produced by neutron absorption in the reactions ... [Pg.182]

The breeder reactor, which would produce and bum plutonium and gradually increase the inventory of fissionable material, requires reprocessing of nuclear fuel. As of 1995 only limited research and development was in progress on breeder reactors, mainly in France and Japan. [Pg.182]

Several components are required in the practical appHcation of nuclear reactors (1 5). The first and most vital component of a nuclear reactor is the fuel, which is usually uranium slightly enriched in uranium-235 [15117-96-1] to approximately 3%, in contrast to natural uranium which has 0.72% Less commonly, reactors are fueled with plutonium produced by neutron absorption in uranium-238 [24678-82-8]. Even more rare are reactors fueled with uranium-233 [13968-55-3] produced by neutron absorption in thorium-232 (see Nuclear reactors, nuclear fuel reserves). The chemical form of the reactor fuel typically is uranium dioxide, UO2, but uranium metal and other compounds have been used, including sulfates, siUcides, nitrates, carbides, and molten salts. [Pg.210]

Bleeding of nuclear fuel was recognized as having a potentially important impact on the avadabihty of energy resources as soon as plutonium was... [Pg.220]

The determination of critical si2e or mass of nuclear fuel is important for safety reasons. In the design of the atom bombs at Los Alamos, it was cmcial to know the critical mass, ie, that amount of highly enriched uranium or plutonium that would permit a chain reaction. A variety of assembhes were constmcted. Eor example, a bare metal sphere was found to have a critical mass of approximately 50 kg, whereas a natural uranium reflected 235u sphere had a critical mass of only 16 kg. [Pg.224]

Concern about the potential diversion of separated reactor-grade plutonium has led to a reduction ia U.S. governmental support of development of both plutonium recycle and the Hquid metal reactor. This latter ultimately depends on chemical reprocessing to achieve its long-range purpose of generating more nuclear fuel than it bums ia generating electricity. [Pg.243]

Approximately 25—30% of a reactor s fuel is removed and replaced during plaimed refueling outages, which normally occur every 12 to 18 months. Spent fuel is highly radioactive because it contains by-products from nuclear fission created during reactor operation. A characteristic of these radioactive materials is that they gradually decay, losing their radioactive properties at a set rate. Each radioactive component has a different rate of decay known as its half-life, which is the time it takes for a material to lose half of its radioactivity. The radioactive components in spent nuclear fuel include cobalt-60 (5-yr half-Hfe), cesium-137 (30-yr half-Hfe), and plutonium-239 (24,400-yr half-Hfe). [Pg.92]

Uranium and mixed uranium—plutonium nitrides have a potential use as nuclear fuels for lead cooled fast reactors (136—139). Reactors of this type have been proposed for use ia deep-sea research vehicles (136). However, similar to the oxides, ia order for these materials to be useful as fuels, the nitrides must have an appropriate size and shape, ie, spheres. Microspheres of uranium nitrides have been fabricated by internal gelation and carbothermic reduction (140,141). Another use for uranium nitrides is as a catalyst for the cracking of NH at 550°C, which results ia high yields of H2 (142). [Pg.325]

Uranium is used as the primai-y source of nuclear energy in a nuclear reactor, although one-third to one-half of the power will be produced from plutonium before the power plant is refueled. Plutonium is created during the uranium fission cycle, and after being created will also fission, contributing heat to make steam in the nuclear power plant. These two nuclear fuels are discussed separately in order to explore their similarities and differences. Mixed oxide fuel, a combination of uranium and recovered plutonium, also has limited application in nuclear fuel, and will be briefly discussed. [Pg.866]

Plutonium-239 is a fissile element, and vvill split into fragments when struck by a neutron in the nuclear reactor. This makes Pu-239 similar to U-235, able to produce heat and sustain a controlled nuclear reaction inside the nuclear reactor. Nuclear power plants derive over one-third of their power output from the fission of Pu-239. Most of the uranium inside nuclear fuel is U-238. Only a small fraction is the fissile U-235. Over the life cycle of the nuclear fuel, the U-238 changes into Pu-239, which continues to provide nuclear energy to generate electricity. [Pg.869]

Now that much of the world has agreed to nuclear disarmament, scientists and world leaders are searching for uses for the surplus weapons-grade plutonium. Instead of pursuing disposal options, one option is the use of mixed-oxide (MOX) nuclear fuel. [Pg.870]

Mixed oxide fuel is not appropriate for all nuclear reactors. Plutonium requires faster neutrons in order to operate in a sustained chain reaction. Light-water reactors operate in a highly moderated environment. [Pg.870]

Plutonium breeder LMFBR fuels, 6, 926 Plutonium carbide nuclear fuels, 6, 928 Plutonium complexes, 3,1131-1215 cupferron, 2, 510 Plutonium(III) complexes... [Pg.200]

Plutonium-noble metal compounds have both technological and theoretical importance. Modeling of nuclear fuel interactions with refractory containers and extension of alloy bonding theories to include actinides require accurate thermodynamic properties of these materials. Plutonium was shown to react with noble metals such as platinum, rhodium, iridium, ruthenium, and osmium to form highly stable intermetallics. [Pg.103]

Other reasons for investigating plutonium photochemistry in the mid-seventies included the widely known uranyl photochemistry and the similarities of the actinyl species, the exciting possibilities of isotope separation or enrichment, the potential for chemical separation or interference in separation processes for nuclear fuel reprocessing, the possible photoredox effects on plutonium in the environment, and the desire to expand the fundamental knowledge of plutonium chemistry. [Pg.263]

The possible application of aqueous plutonium photochemistry to nuclear fuel reprocessing probably has been the best-received justification for investigating this subject. The necessary controls of and changes in Pu oxidation states could possibly be improved by plutonium photochemical reactions that were comparable to the uranyl photochemistry. [Pg.264]

In 1976 the Swedish government stipulated that no new nuclear reactors should be charged until it had been shown how the radioactive waste products could be taken care of in an "absolutely safe manner" (8). Consequently, the nuclear power industry (through their joint Nuclear Fuel Supply Co, SKBF) embarked on a program referred to as the Nuclear Fuel Safety (KBS) Project (8). In one of the schemes (9) a repository for spent nuclear fuel elements in envisaged at a depth of 500 m in granitic bedrock. The repository will ultimately contain 6000 tonnes of uranium and 45 tonnes of plutonium. The spent fuel elements will be stored in copper cylinders (0.8 m in diameter and 4.7 m in length) with a wall thickness of 200 mm the void will be filled with lead. [Pg.290]

The effect of irradiation on the extractability of sulfoxides towards plutonium, uranium and some fission products were studied by Subramanian and coworkers . They studied mainly the effect of irradiation on dihexyl sulfoxide (DHSO) and found that irradiation did not change the distribution coefficient for Ru, Eu and Ce but increases the distribution coefficient for Zr and Pu. When comparing DHSO and tributyl phosphate (TBP), the usual solvent for the recovery and purification of plutonium and uranium from spent nuclear fuels, the effect of irradiation to deteriorate the extraction capability is much larger in TBP. Lan and coworkers studied diphenyl sulfoxides as protectors for the gamma radiolysis of TBP. It was found that diphenyl sulfoxide can accept energy from two different kinds of excited TBP and thus inhibits the decomposition of the latter. [Pg.911]


See other pages where Nuclear fuels plutonium is mentioned: [Pg.203]    [Pg.203]    [Pg.91]    [Pg.203]    [Pg.203]    [Pg.91]    [Pg.183]    [Pg.201]    [Pg.80]    [Pg.80]    [Pg.201]    [Pg.202]    [Pg.241]    [Pg.177]    [Pg.202]    [Pg.202]    [Pg.325]    [Pg.453]    [Pg.1260]    [Pg.868]    [Pg.869]    [Pg.870]    [Pg.14]    [Pg.200]    [Pg.200]    [Pg.241]    [Pg.911]    [Pg.233]    [Pg.273]    [Pg.842]    [Pg.460]   
See also in sourсe #XX -- [ Pg.120 , Pg.121 ]




SEARCH



Nuclear fission plutonium fuel

Plutonium carbide nuclear fuels

Plutonium extraction from irradiated nuclear fuel

Plutonium from nuclear fuel waste

Plutonium isotopes, nuclear fuel reprocessing

© 2024 chempedia.info