Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonpolar alcohol

However, the products may also be trifluoroacetates of the hydroxy compounds. Trifluoroacetates are favored with hydroxy compounds such as nonpolar alcohols, which are better nucleophiles than the more acidic alcohols containing polar groups such as trifluoromethyl, or phenols whose acidity is higher than that of nonpolar alcohols by as much as six or seven orders of magnitude. In addition, formation of trifluoroacetates is enhanced by addition of carbon tetrachloride, trifluoroacetic acid, or both. The presence of trifluoracetic acid may affect the reaction equilibrium between the trifluoroacetate of the hydroxy compound and the carboxylic acid by reacting with the byproduct of the reaction, carboxylic acid, and thus increase the formation of the trifluoroacetate (Guldberg-Waage s law). [Pg.92]

Figure 2 The distance dependence characterizing exclusion of small solutes from macromolecular surfaces follows the same exponential behavior as the hydration force between macromolecules. The extent of exclusion can be extracted from the dependence of forces on solute concentration. ITexcess is the effective osmotic pressure applied by the solute in the bulk solution on the macromolecular phase, and np is the maximal pressure from complete exclusion, riexcess/rio = 1 then corresponds to complete exclusion and n excess/Ho = 0 means no inclusion or exclusion. The distance dependent exclusion the polar polyols adonitol (A) and glycerol ( ) from hydrophobically modified hydroxypropyl cellulose (FIPC) and of the nonpolar alcohols i-propanol ( ) and methyl pentanediol (MPD) ( ) from spermidine +-DNA is shown. As in Fig. 1, interaxial spacings are converted to surface separations. The apparent exponential decay length varies between 3.5 and 4 A (solid lines indicate fits to the data). Figure 2 The distance dependence characterizing exclusion of small solutes from macromolecular surfaces follows the same exponential behavior as the hydration force between macromolecules. The extent of exclusion can be extracted from the dependence of forces on solute concentration. ITexcess is the effective osmotic pressure applied by the solute in the bulk solution on the macromolecular phase, and np is the maximal pressure from complete exclusion, riexcess/rio = 1 then corresponds to complete exclusion and n excess/Ho = 0 means no inclusion or exclusion. The distance dependent exclusion the polar polyols adonitol (A) and glycerol ( ) from hydrophobically modified hydroxypropyl cellulose (FIPC) and of the nonpolar alcohols i-propanol ( ) and methyl pentanediol (MPD) ( ) from spermidine +-DNA is shown. As in Fig. 1, interaxial spacings are converted to surface separations. The apparent exponential decay length varies between 3.5 and 4 A (solid lines indicate fits to the data).
As the lyophilicity of the system increases upon the transition to a high concentration of nonpolar alcohols, the conclusion regarding low values of (and Of(SL)) holds true but does not allow one to draw any certain conclusions with regard to the nature of a residual fluid potentially remaining in the gap. [Pg.39]

Tsang, S., Zhu, J., Steele, A., et al. (2004). Partial aerial oxidation of nonpolar alcohols over Teflon-modified noble metal catalysts in supercritical carbon dioxide, J. Catal., 226, pp. 435-442. [Pg.871]

The type of behavior shown by the ethanol-water system reaches an extreme in the case of higher-molecular-weight solutes of the polar-nonpolar type, such as, soaps and detergents [91]. As illustrated in Fig. Ul-9e, the decrease in surface tension now takes place at very low concentrations sometimes showing a point of abrupt change in slope in a y/C plot [92]. The surface tension becomes essentially constant beyond a certain concentration identified with micelle formation (see Section XIII-5). The lines in Fig. III-9e are fits to Eq. III-57. The authors combined this analysis with the Gibbs equation (Section III-SB) to obtain the surface excess of surfactant and an alcohol cosurfactant. [Pg.69]

The behavior of insoluble monolayers at the hydrocarbon-water interface has been studied to some extent. In general, a values for straight-chain acids and alcohols are greater at a given film pressure than if spread at the water-air interface. This is perhaps to be expected since the nonpolar phase should tend to reduce the cohesion between the hydrocarbon tails. See Ref. 91 for early reviews. Takenaka [92] has reported polarized resonance Raman spectra for an azo dye monolayer at the CCl4-water interface some conclusions as to orientation were possible. A mean-held theory based on Lennard-Jones potentials has been used to model an amphiphile at an oil-water interface one conclusion was that the depth of the interfacial region can be relatively large [93]. [Pg.551]

From what you know about wetting, contact angles, and spread monolayers, explain why a Langmuir-Blodgett layer will deposit as a F type if there are nonpolar fatty acids, yet will switch to a Z-type deposition if bipolar alcohols or amines are added (see Refs. 175, 176). What defines the critical contact angle for the deposition change ... [Pg.563]

Solvent Effects on the Rate of Substitution by the S 2 Mechanism Polar solvents are required m typical bimolecular substitutions because ionic substances such as the sodium and potassium salts cited earlier m Table 8 1 are not sufficiently soluble m nonpolar solvents to give a high enough concentration of the nucleophile to allow the reaction to occur at a rapid rate Other than the requirement that the solvent be polar enough to dis solve ionic compounds however the effect of solvent polarity on the rate of 8 2 reactions IS small What is most important is whether or not the polar solvent is protic or aprotic Water (HOH) alcohols (ROH) and carboxylic acids (RCO2H) are classified as polar protic solvents they all have OH groups that allow them to form hydrogen bonds... [Pg.346]

Primary aliphatic alcohols 3640-3630 (s) Only in very dilute solutions in nonpolar solvents... [Pg.733]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

Bond dissociation energies (BDEs) for the oxygen—oxygen and oxygen— hydrogen bonds are 167—184 kj/mol (40.0—44.0 kcal/mol) and 375 kj/mol (89.6 kcal/mol), respectively (10,45). Heats of formation, entropies, andheat capacities of hydroperoxides have been summarized (9). Hydroperoxides exist as hydrogen-bonded dimers in nonpolar solvents and readily form hydrogen-bonded associations with ethers, alcohols, amines, ketones, sulfoxides, and carboxyhc acids (46). Other physical properties of hydroperoxides have been reported (46). [Pg.103]

This method is also used with alcohols of the stmcture Cl(CH2) OH (114). HaloaLkyl chlorosulfates are likewise obtained from the reaction of halogenated alkanes with sulfur trioxide or from the chlorination of cycHc sulfites (115,116). Chlorosilanes form chlorosulfate esters when treated with sulfur trioxide or chlorosulfuric acid (117). Another approach to halosulfates is based on the addition of chlorosulfuric or fluorosulfuric acid to alkenes in nonpolar solvents (118). [Pg.202]

Commercially available PVB resias are generally soluble in lower molecular weight alcohols, glycol ethers, and certain mixtures of polar and nonpolar solvents. A representative Hst is found in Table 5. Grades with lower vinyl alcohol content are soluble in a wider variety of solvents. A common solvent for all of the Butvar resins is a combination of 60 parts of toluene and 40 parts of ethanol (95%) by weight. [Pg.452]

When exposed to ait, the sodium salts tend to take up moisture and form dihydrates. The alkah metal xanthates are soluble ia water, alcohols, the lower ketones, pyridine, and acetonitrile. They are not particularly soluble ia nonpolar solvents, eg, ether or ligroin. The solubiUties of a number of these salts are Hsted ia Table 4. Potassium isopropyl xanthate is soluble ia acetone to ca 6 wt %, whereas the corresponding methyl, ethyl, / -propyl, n-huty isobutyl, isoamyl, and benzyl [2720-79-8] xanthates are soluble to more than 10 wt % (12). The solubiUties of the commercially available xanthates ia water are plotted versus temperature ia Figure 1 (14). [Pg.361]

Bromine is soluble in nonpolar solvents and in certain polar solvents such as alcohol and sulfuric acid. It is miscible with alcohol, ether, carbon disulfide, and many halogenated solvents. Bromine reacts with some of these solvents under certain conditions. [Pg.280]

A considerable amount of hydrobromic acid is consumed in the manufacture of inorganic bromides, as well as in the synthesis of alkyl bromides from alcohols. The acid can also be used to hydrobrominate olefins (qv). The addition can take place by an ionic mechanism, usually in a polar solvent, according to Markownikoff s rule to yield a secondary alkyl bromide. Under the influence of a free-radical catalyst, in aprotic, nonpolar solvents, dry hydrogen bromide reacts with an a-olefin to produce a primary alkyl bromide as the predominant product. Primary alkyl bromides are useful in synthesizing other compounds and are 40—60 times as reactive as the corresponding chlorides (6). [Pg.291]

For more selective hydrogenations, supported 5—10 wt % palladium on activated carbon is preferred for reductions in which ring hydrogenation is not wanted. Mild conditions, a neutral solvent, and a stoichiometric amount of hydrogen are used to avoid ring hydrogenation. There are also appHcations for 35—40 wt % cobalt on kieselguhr, copper chromite (nonpromoted or promoted with barium), 5—10 wt % platinum on activated carbon, platinum (IV) oxide (Adams catalyst), and rhenium heptasulfide. Alcohol yields can sometimes be increased by the use of nonpolar (nonacidic) solvents and small amounts of bases, such as tertiary amines, which act as catalyst inhibitors. [Pg.200]

Cyanamide is a weak acid with a very high solubility in water. It is completely soluble at 43°C, and has a minimum solubiUty (eutectic) at — 15°C. It is highly soluble in polar organic solvents, such as the lower alcohols, esters, and ketones, and less soluble in nonpolar solvents (4). [Pg.367]

Liquid-Phase Components. It is usual to classify organic Hquids by the nature of the polar or hydrophilic functional group, ie, alcohol, acid, ester, phosphate, etc. Because lowering of surface tension is a key defoamer property and since this effect is a function of the nonpolar portion of the Hquid-phase component, it is preferable to classify by the hydrophobic, nonpolar portion. This approach identifies four Hquid phase component classes hydrocarbons, polyethers, siHcones, and duorocarbons. [Pg.463]

The resistance to heat and aging of optimized EPM/EPDM vulcanizates is better than that of SBR and NR. Peroxide-cured EPM can, for instance, be exposed for 1000 h at 150°C without significant hardening. Particularly noteworthy is the ozone resistance of EPM/EPDM vulcanizates. Even after exposure for many months to ozone-rich air of 100 pphm, the vulcanizates will not be seriously harmed. EPM/EPDM vulcanizates have an excellent resistance to chemicals, such as dilute acids, alkaUes, alcohol, etc. This is in contrast to the resistance to aUphatic, aromatic, or chlorinated hydrocarbons. EPM/EPDM vulcanizates swell considerably in these nonpolar media. [Pg.505]

Tyn-Calus This correlation requires data in the form of molar volumes and parachors = ViCp (a property which, over moderate temperature ranges, is nearly constant), measured at the same temperature (not necessarily the temperature of interest). The parachors for the components may also be evaluated at different temperatures from each other. Quale has compiled values of fj for many chemicals. Group contribution methods are available for estimation purposes (Reid et al.). The following suggestions were made by Reid et al. The correlation is constrained to cases in which fig < 30 cP. If the solute is water or if the solute is an organic acid and the solvent is not water or a short-chain alcohol, dimerization of the solute A should be assumed for purposes of estimating its volume and parachor. For example, the appropriate values for water as solute at 25°C are = 37.4 cmVmol and yn = 105.2 cm g Vs mol. Finally, if the solute is nonpolar, the solvent volume and parachor should be multiplied by 8 Ig. [Pg.597]

Cosolvents ana Surfactants Many nonvolatile polar substances cannot be dissolved at moderate temperatures in nonpolar fluids such as CO9. Cosolvents (also called entrainers, modifiers, moderators) such as alcohols and acetone have been added to fluids to raise the solvent strength. The addition of only 2 mol % of the complexing agent tri-/i-butyl phosphate (TBP) to CO9 increases the solubility ofnydro-quinone by a factor of 250 due to Lewis acid-base interactions. Veiy recently, surfac tants have been used to form reverse micelles, microemulsions, and polymeric latexes in SCFs including CO9. These organized molecular assemblies can dissolve hydrophilic solutes and ionic species such as amino acids and even proteins. Examples of surfactant tails which interact favorably with CO9 include fluoroethers, fluoroacrylates, fluoroalkanes, propylene oxides, and siloxanes. [Pg.2002]

The solubility of many steroids in ammonia-tetrahydrofuran-/-butyl alcohol is about 0.06 A/, a higher concentration than has been reported in other solvent systems. Still higher concentrations may be possible in particular cases by suitable variation in the solvent ratios Procedure 3 (section V) describes such a reduction of estradiol 3-methyl ether at a 0.12 M concentration. A few steriods such as the dimethyl and diethyl ketals of estrone methyl ether are poorly soluble in ammonia-tetrahydrofuran-/-buty] alcohol and cannot be reduced successfully at a concentration of 0.06 even with a 6 hour reduction period. The diethyl ketal of estrone methyl ether is reduced successfully at 0.12 M concentration using a two-phase solvent system of ammonia-/-amyl alcohol-methylcyclohexane (Procedure 4, section V). This mixture probably would be useful for any nonpolar steroid that is poorly soluble in polar solvents but is readily soluble in hydrocarbons. [Pg.26]

Although lead tetraacetate can attack many polar and nonpolar functions in the steroid molecule, its greatest reactivity is towards vicinal diols. These diols are generally cleaved so rapidly under stoichiometric conditions that other alcohol functions in the molecule need not be protected. Thus lead tetraacetate in acetic acid at room temperature splits the 17a,20-diol group in (9) to yield the 17-ketone (10), the allylic A -3jS-alcohol remaining intact during this oxidation. Since lead tetraacetate is solublein many anhydrous... [Pg.242]

If homolytic reaction conditions (heat and nonpolar solvents) can be avoided and if the reaction is conducted in the presence of a weak base, lead tetraacetate is an efficient oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. The yield of product is in many cases better than that obtained by oxidation with chromium trioxide. The reaction in pyridine is moderately slow the intial red pyridine complex turns to a yellow solution as the reaction progresses, the color change thus serving as an indicator. The method is surprisingly mild and free of side reactions. Thus 17a-ethinyl-17jS-hydroxy steroids are not attacked and 5a-hydroxy-3-ket-ones are not dehydrated. [Pg.242]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

A considerable extension of the synthetic utility of the hypoiodite reaction is achieved if the steroid hypoiodite (2) is generated from the alcohol and acetyl hypoiodite and then decomposed in a nonpolar solvent. In this case ionic hydrogen iodide elimination in the 1,5-iodohydrin intermediate (3) is slow, thereby allowing (3) to be converted into an iodo hypoiodite (5). [Pg.247]


See other pages where Nonpolar alcohol is mentioned: [Pg.145]    [Pg.145]    [Pg.311]    [Pg.145]    [Pg.145]    [Pg.311]    [Pg.467]    [Pg.2419]    [Pg.166]    [Pg.115]    [Pg.167]    [Pg.147]    [Pg.51]    [Pg.131]    [Pg.297]    [Pg.207]    [Pg.361]    [Pg.73]    [Pg.469]    [Pg.270]    [Pg.403]    [Pg.461]    [Pg.151]    [Pg.200]    [Pg.189]    [Pg.239]    [Pg.68]   
See also in sourсe #XX -- [ Pg.157 , Pg.159 ]




SEARCH



Nonpolar

Nonpolarized

© 2024 chempedia.info