Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile rubber NBR

The butadiene-acrylonitrile rubbers were first prepared about 1930 about five years after the initial development of free-radical-initiated emulsion polymerisation. Commercial production commenced in Germany in 1937, with the product being known as Buna N. By the late 1980s there were about 350 grades marketed by some 20 producers and by the early 1990s world production was of the order of 250000 tonnes per annum, thus classifying it as a major special purpose rubber. [Pg.294]

The rubbers may be vulcanised by conventional accelerated sulphur systems and also by peroxides. The vulcanisates are widely used in petrol hose and seal applications. Two limiting factors of the materials as rubbers are the tendency to harden in the presence of sulphur-bearing oils, particularly at elevated temperatures (presumably due to a form of vulcanisation), and the rather limited heat resistance. The latter may be improved somewhat by Judicious compounding to give vulcanisates that may be used up to 150°C. When for the above reasons nitrile rubbers are unsatisfactory it may be necessary to consider acrylic rubbers (Chapter 15), epichlorohydrin rubbers (Chapter 19) and in more extreme conditions fluororubbers (Chapter 13). [Pg.294]

Nitrile rubbers are sometimes used in conjunction with plastics. Blends with PVC provide an early example of polyblends. (In fact this word has been used by one company as a trade description for such blends for over 25 years.) [Pg.294]

Low molecular weight liquid nitrile rubbers with vinyl, carboxyl or mercaptan reactive end groups have been used with acrylic adhesives, epoxide resins and polyesters. Japanese workers have produced interesting butadiene-acrylonitrile alternating copolymers using Ziegler-Natta-type catalysts that are capable of some degree of ciystallisation. [Pg.294]

Hydrogenated nitrile rubbers were introduced in the mid-1980s as Therban by Bayer. The initial grade had an acrylonitrile content of only 17% instead of approx. 34% in conventional NBR. Whilst non-sulphur-curing systems such as the use of peroxides with triallyl cyanurate or isocyanurate are necessary, the saturated rubber has a number of advantages over NBR. These include improved [Pg.294]


Nitrile Rubber (NBR). This is the most solvent-resistant of the synthetic elastomers, except for Thiokol, which, however, has rather severe limitations. NBR was developed both in Germany and the United States by private industry prior to World War II. It is a copolymer of butadiene, CH2=CH—CH=CH2, and acrylonitrile, CH2=CHCN, corresponding to the molecular stmcture shown in Table 1. [Pg.469]

Several other elastic materials may be made by copolymerising one of the above monomers with lesser amounts of one or more monomers. Notable amongst these are SBR, a copolymer of butadiene and styrene, and nitrile rubber (NBR), a copolymer of butadiene and acrylonitrile. The natural rubber molecule is structurally a c/i -1,4-polyisoprene so that it is convenient to consider natural rubber in this chapter. Some idea of the relative importance of these materials may be gauged from the data in Table 11.14. [Pg.281]

Nitrile rubber (NBR) was first commercialized by I.G. Farbindustry, Germany, in 1937, under the trade name of Buna N. Its excellent balance of properties confers it an important position in the elastomer series. Nitrile rubber, a copolymer of butadiene and acrylonitrile, is widely used as an oil-resistant rubber. The acrylonitrile content decides the ultimate properties of the elastomer. In spite of possessing a favorable combination of physical properties, there has been a continuous demand to improve the aging resistance of NBR due to the tougher requirements of industrial and automotive applications. [Pg.555]

The accelerated sulfur vulcanization of general-purpose diene rubbers (e.g., NR, styrene-butadiene rubber [SBR], and butadiene rubber [BR]) by sulfur in the presence of organic accelerators and other rubbers, which are vulcanized by closely related technology (e.g., ethylene-propylene-diene monomer [EPDM] mbber, butyl rubber [HR], halobutyl mbber [XIIR], nitrile rubber [NBR]) comprises more than 90% of all vulcanizations. [Pg.416]

Elastomer types used successfully in these areas are natural rubber (NR), polychloroprene (CR), and nitrile rubber (NBR), and hydrogenated nitrile rubber (HNBR), where oil resistance is also required. [Pg.627]

Nitrile Rubbers (NBR/HNBR) Designation in ISO 1629 - NBR Repeat Unit... [Pg.89]

Carbon black is widely used as a reinforcing agent for most synthetic elastomers. It is especially important for synthetic elastomers such as SBR, nitrile rubber (NBR), and BR that do not crystallize at high strains. Thus, non-carbon-filled SBR has a tensile strength of about 2 MPa and with addition of carbon black this increases to about 20 MPa. [Pg.556]

Nitrile rubber (NBR), a copolymer of 1,3-butadiene with 20-40% acrylonitrile, is noted for its oil resistance. More than 150 million pounds are produced annually in the United States. Applications include fuel tanks, gasoline hoses, and creamery equipment. Nitrile resin is made by copolymerizing acrylonitrile with about 20-30% styrene or methyl methacrylate in the presence of NBR or SBR rubber to yield a blend of the graft terpolymer and homocopolymer. Applications include extruded and blow-molded containers for household, automotive, and other products as well as some nonbeverage foods (spices, vitamins, candy). [Pg.533]

Copolymerizations can also be carried out in an emulsion reaction. For example, nitrile rubber (NBR) can be made from the emulsion polymerization of acrylonitrile and butadiene ... [Pg.261]

Hydrogenation is an important method of chemical modification of elastomers. Because of the absence of carbon-carbon unsaturation, hydrogenated elastomers have good resistance to oxidative and thermal degradation, improved weatherability and good resistance towards chemicals and fluids [5-7]. Nitrile rubber (NBR) is a specialty rubber, and because of its oil resistance properties, it has been used in oil-wells and the automotive industry. Hydrogenation of NBR has been studied extensively because of its technological importance [16-19]. [Pg.126]

Nitrile rubbers (NBR) are blended into PVC-P formulations giving vinyl based thermoplastic... [Pg.19]

Nitrile rubber (NBR) is widely used in compounds designed for seals and gaskets, and in hoses for both aqueous and fatty foods. In particular, dairy hosing and milk liners are normally manufactured in nitrile rubber or nitrile rubber blends (e.g. with SBR). Nitrile mbber is better able to withstand heat ageing than natural rubber and so the maximum continuous use temperature is higher at 120 °C. In practice most applications involve flow or short-term static conditions at temperatures below 40 °C. [Pg.274]


See other pages where Nitrile rubber NBR is mentioned: [Pg.70]    [Pg.1005]    [Pg.1063]    [Pg.677]    [Pg.281]    [Pg.294]    [Pg.581]    [Pg.587]    [Pg.656]    [Pg.271]    [Pg.353]    [Pg.891]    [Pg.84]    [Pg.1274]    [Pg.1332]    [Pg.123]    [Pg.94]    [Pg.224]    [Pg.677]    [Pg.951]    [Pg.19]    [Pg.109]    [Pg.83]    [Pg.504]    [Pg.69]    [Pg.116]    [Pg.125]    [Pg.1466]    [Pg.687]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



NBR rubber

Nitrile Rubber (NBR, Buna-N)

Nitrile rubber

© 2024 chempedia.info