Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric oxide vascular

In addition to intracellular heme-containing proteins, big-conductance calcium-dependent K+ (BKCa) channels and calcium-spark activated transient Kca channels in plasma membrane are also tar geted by CO [3]. As well known, nitric oxide (NO) also activates BKca channels in vascular smooth muscle cells. While both NO and CO open BKCa channels, CO mainly acts on alpha subunit of BKCa channels and NO mainly acts on beta subunit of BKca channels in vascular smooth muscle cells. Rather than a redundant machinery, CO and NO provide a coordinated regulation of BKca channel function by acting on different subunits of the same protein complex. Furthermore, pretreatment of vascular smooth muscle... [Pg.322]

Vascular Endothelial Growth Factor Nitric Oxide Purinergic System... [Pg.470]

The human histamine Hi-receptor is a 487 amino acid protein that is widely distributed within the body. Histamine potently stimulates smooth muscle contraction via Hi-receptors in blood vessels, airways and in the gastrointestinal tract. In vascular endothelial cells, Hi-receptor activation increases vascular permeability and the synthesis and release of prostacyclin, plateletactivating factor, Von Willebrand factor and nitric oxide thus causing inflammation and the characteristic wheal response observed in the skin. Circulating histamine in the bloodstream (from, e.g. exposure to antigens or allergens) can, via the Hi-receptor, release sufficient nitric oxide from endothelial cells to cause a profound vasodilatation and drop in blood pressure (septic and anaphylactic shock). Activation of... [Pg.589]

Nitric oxide is a regulator of vascular smooth muscle blockage of its formation from arginine causes an acute elevation of blood pressure, indicating that regulation of blood pressure is one of its many functions. [Pg.578]

Moncada, S., Radomski, M.W. and Palmer, R.M. (1988). Endothelium-derived relaxing factor identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem. Pharmacol. 37, 2495-2501. [Pg.111]

Radomski, M.W., Palmer, R.M. and Moncada, S. (1990). Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl Acad. Sci. USA 87, 10043-10047. [Pg.124]

Hutcheson, I.R, Whittle, B.J.R. and Boughton-Smith, N.K. (1990). Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br. J. Pharmacol. 101, 815-820. [Pg.165]

A relationship between polyol pathway activity and reduction in endothelium-dependent relaxation in aorta from chronic STZ-diabetic rats has recently been reported (Cameron and Cotter, 1992). In agreement with several previous studies (Oyama et al., 1986 Kamata et al., 1989), endothelial-dependent relaxation was defective in the diabetic rats but the deficit was prevented by prior treatment with an AR inhibitor. The mechanism underlying the defect has been speculated to be due to decreased production of endothelium-derived relaxing factor (EDRF) or nitric oxide, NO (Hattori et al., 1991). It has been speculated that these vascular abnormalities may lead to diminished blood flow in susceptible tissues and contribute to the development of some diabetic complications. NO is synthesized from the amino-acid L-arginine by a calcium-dependent NO synthase, which requires NADPH as a cofactor. Competition for NADPH from the polyol pathway would take place during times of sustained hyperglycaemia and... [Pg.191]

It is misleading to consider that ROS are always deleterious, and that to prevent release or action of ail ROS will be of therapeutic value. One could reason that some ROS are released without control or purpose, as by-products of the normal metabolism of eicosanoids, or during oxidative phosphorylation in the mitochondria. However, during normal function, inflammatory ceUs appropriately release ROS both intracellularly into vacuoles and extracellularly in order to kill foreign organisms in host defence. Also, nitric oxide is a radical species whose principal role in the lung appears to be the control of pulmonary vascular tone and platelet function. Nevertheless, there are clear examples where fhistrated phagocytosis could explain an excessive release of ROS in... [Pg.219]

The endothelium has many diverse functions that enable it to participate in in-flammatoiy reactions (H27). These include modulation of vascular tone, and hence control of local blood flow changes in structure that allow leakage of fluids and plasma proteins into extravascular tissues local accumulation and subsequent extravasation into tissues of leukocytes and synthesis of surface molecules and soluble factors involved in leukocyte activation (B43). The endothelial cells themselves can modulate vascular tone by the release of vasoactive substances such as prostacyclin, nitric oxide (NO), ET. Endothelium-derived vasoactive substances... [Pg.69]

R4. Rees, D. D., Cellek, S Palmer, R. M. J., and Moncada, S., Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone An insight into endotoxin shock. Biochem. Biophys. Res. Commun. 173,541-547 (1990). [Pg.125]

The vascular endothelium produces a number of substances that are released basally into the blood vessel wall to alter vascular smooth muscle tone. One such substance is endothelin (ET-1). Endothelin exerts its effects throughout the body, causing vasoconstriction as well as positive inotropic and chronotropic effects on the heart. The resulting increases in TPR and CO contribute to an increase in MAP. Synthesis of endothelin appears to be enhanced by many stimuli, including Ag II, vasopressin, and the mechanical stress of blood flow on the endothelium. Synthesis is inhibited by vasodilator substances such as prostacyclin, nitric oxide, and atrial natriuretic peptide. There is evidence that endothelin is involved with the pathophysiology of many cardiovascular diseases, including hypertension, heart failure, and myocardial infarction. Endothelin receptor antagonists are currently available for research use only. [Pg.210]

NO is a gaseous neurotransmitter implicated in signaling in the central and peripheral nervous system as well as in the immune system and the vasculature. NO is formed from L-arginine by nitric oxide synthase (NOS). There are three isoforms of NOS. All isoforms require NADPH as a cofactor, use L-arginine as a substrate, and are inhibited by Nw-nitro-L-arginine methyl ester (L-NAME). The three isoforms are separate gene products. One isoform of NOS is a cytosolic, calcium/calmodulin-independent, inducible enzyme (iNOS). It is found in macrophages, neutrophils, vascular smooth muscle, and endothelia. The iNOS... [Pg.322]

Prasad A, Narayanan S, Waclawiw MA, Epstein N, Quyyumi AA. The insertion/deletion polymorphism of the angiotensin-converting enzyme gene determines coronary vascular tone and nitric oxide activity. J Am Coll Cardiol 2000 36 1579-1586. [Pg.263]

M. Kelm and J. Schrader, Control of coronary vascular tone by nitric-oxide. Circ. Res. 66, 1561-1575 (1990). [Pg.49]

The endothelial vascular cells have an important role in maintaining cardiovascular health, producing nitric oxide (NO), a powerful vasodilator. NO also prevents the adhesion of leukocytes and platelets to the endothelial surface and platelet aggregation (Barringer and others 2008 Erdman and others 2007). [Pg.159]

The aggregation of platelets contributes to the development of atherosclerosis and to the formation of acute thrombus. The activated platelets that adhere to the vascular endothelium generate lipid peroxides and oxygen free radicals, inhibiting the endothelial formation of prostacyclin and nitric oxide. [Pg.160]


See other pages where Nitric oxide vascular is mentioned: [Pg.503]    [Pg.459]    [Pg.342]    [Pg.84]    [Pg.503]    [Pg.459]    [Pg.342]    [Pg.84]    [Pg.170]    [Pg.224]    [Pg.273]    [Pg.627]    [Pg.675]    [Pg.857]    [Pg.965]    [Pg.1020]    [Pg.390]    [Pg.68]    [Pg.77]    [Pg.99]    [Pg.47]    [Pg.56]    [Pg.56]    [Pg.179]    [Pg.848]    [Pg.1441]    [Pg.75]    [Pg.438]    [Pg.255]    [Pg.256]    [Pg.171]    [Pg.726]    [Pg.728]    [Pg.729]   
See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Endothelial nitric oxide synthase vascular pathology

Nitric Oxide and Vascular Disorders

Nitric oxide vascular disorders

Pulmonary vascular resistance inhaled nitric oxide effect

Vascular smooth muscle, nitric oxide

Vascular system, nitric oxide affecting

© 2024 chempedia.info