Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel oxide surface areas

Other alkaline primary cells couple zinc with oxides of mercury or silver and some even use atmospheric oxygen (zinc—air cell). Frequendy, zinc powder is used in the fabrication of batteries because of its high surface area. Secondary (rechargeable) cells with zinc anodes under development are the alkaline zinc—nickel oxide and zinc—chlorine (see Batteries). [Pg.398]

There is little data available to quantify these factors. The loss of catalyst surface area with high temperatures is well-known (136). One hundred hours of dry heat at 900°C are usually sufficient to reduce alumina surface area from 120 to 40 m2/g. Platinum crystallites can grow from 30 A to 600 A in diameter, and metal surface area declines from 20 m2/g to 1 m2/g. Crystal growth and microstructure changes are thermodynamically favored (137). Alumina can react with copper oxide and nickel oxide to form aluminates, with great loss of surface area and catalytic activity. The loss of metals by carbonyl formation and the loss of ruthenium by oxide formation have been mentioned before. [Pg.111]

The nickel supported catalysts formed in this way have some specific features (144)- The catalysts containing about 3% of Ni are paramagnetic. When varying the nickel content from 0.1 to 20%, all the nickel the reduced catalyst (the exposed surface area of nickel was about 600 m2/g Ni) is oxidized by oxygen. The activity in benzene hydrogenation is very high and increases in proportional to the nickel content in the catalyst. [Pg.191]

Most research on the structure of skeletal catalysts has focused on nickel and involved methods such as x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), electron diffraction, Auger spectroscopy, and x-ray photoelectron spectroscopy (XPS), in addition to pore size and surface area measurements. Direct imaging of skeletal catalyst structures was not possible for a long while, and so was inferred from indirect methods such as carbon replicas of surfaces [54], The problem is that the materials are often pyrophoric and require storage under water. On drying, they oxidize rapidly and can generate sufficient heat to cause ignition. [Pg.147]

Heat of combustion, thermal conductivity, surface area and other factors influencing pyrophoricity of aluminium, cobalt, iron, magnesium and nickel powders are discussed [4], The relationship between heat of formation of the metal oxide and particle size of metals in pyrophoric powders is discussed for several metals and alloys including copper [5], Further work on the relationship of surface area and ignition temperature for copper, manganese and silicon [6], and for iron and titanium [7] was reported. The latter also includes a simple calorimetric test to determine ignition temperature. [Pg.364]

Electrochemically generated nickei(lll) oxide, deposited onto a nickel plate, is generally useful for the oxidation of alcohols in aqueous alkali [49]. The immersion of nickel in aqueous alkali results in the formation of a surface layer of nickel(ll) oxide which undergoes reversible electrochemical oxidation to form nickel(lll) oxide with a current maximum in cyclic voltammetry at 1.13 V vj. see, observed before the evolution of oxygen occurs [50]. This electrochemical step is fast and oxidation at a prepared oxide film, of an alcohol in solution, is governed by the rate of the chemical reaction between nickel oxide and the substrate [51]. When the film thickness is increased to about 0.1 pm, the oxidation rate of organic species increases to a rate that is fairly indifferent to further increases in the film thickness. This is probably due to an initial increase in the surface area of the electrode [52], In laboratory scale experiments, the nickel oxide electrode layer is prepared by prior electrolysis of nickel sulphate at a nickel anode [53]. It is used in an undivided cell with a stainless steel cathode and an alkaline electrolyte. [Pg.270]

At very low surface areas (about 5 m /g) and constant conversion (70%), the contaminant selectivities are dominated by the matrix composition (Table I). Rare earth and magnesium-containing microspheres were prepared to examine the effects of these metal oxides on catalyst selectivities in the presence of nickel and vanadium. These oxides were chosen because the literature (3,5,10-15) has shown them to be effective at reducing the deleterious effects of vanadium in cracking catalysts. [Pg.185]

Various metal and metal oxide nanoparticles have been prepared on polymer (sacrificial) templates, with the polymers subsequently removed. Synthesis of nanoparticles inside mesoporus materials such as MCM-41 is an illustrative template synthesis route. In this method, ions adsorbed into the pores can subsequently be oxidized or reduced to nanoparticulate materials (oxides or metals). Such composite materials are particularly attractive as supported catalysts. A classical example of the technique is deposition of 10 nm particles of NiO inside the pore structure of MCM-41 by impregnating the mesoporus material with an aqueous solution of nickel citrate followed by calicination of the composite at 450°C in air [68]. Successful synthesis of nanosized perovskites (ABO3) and spinels (AB2O4), such as LaMnOs and CuMn204, of high surface area have been demonstrated using a porous silica template [69]. [Pg.383]

Powder Formation. Metallic powders can be formed by any number of techniques, including the reduction of corresponding oxides and salts, the thermal dissociation of metal compounds, electrolysis, atomization, gas-phase synthesis or decomposition, or mechanical attrition. The atomization method is the one most commonly used, because it can produce powders from alloys as well as from pure metals. In the atomization process, a molten metal is forced through an orifice and the stream is broken up with a jet of water or gas. The molten metal forms droplets to minimize the surface area, which solidify very rapidly. Currently, iron-nickel-molybdenum alloys, stainless steels, tool steels, nickel alloys, titanium alloys, and aluminum alloys, as well as many pure metals, are manufactured by atomization processes. [Pg.699]

The preparation of nickel oxide deposits with high surface area on steel, nickel, copper, graphite or titanium electrodes partly for anodic oxidation of organic compounds and the preparation of pressed nickel oxide powder electrodes mainly for application in storage batteries is described. The performance of nickel oxide anodes for batteries is improved by addition of cobaltflljhydroxide... [Pg.104]

Table 1 shows the properties of smectite-type materials prepared. Smectite materials prepared at lower pH had fewer sodium ions, higher surface areas, and larger pore volumes for a series of samples containing the same divalent cation species (nickel and cobalt) in the octahedral sheet. The adsorption of methylene blue on all the synthetic smectites shows that the smectite fragments are negatively charged. The Si M ratios of synthetic smectites were about 8 6, indicating that most of divalent cations exist in octahedral layers and small amount of divalent cations would exist as hydroxide or oxide cluster in smectite materials. However, the amounts of the hydroxide or oxide cluster were small, because only smectite structures were observed in XRD patterns and EXAFS Fourier transforms of synthetic smectites calcined at 873 K. [Pg.436]

XPS measurements demonstrated that loaded Ni is predominantly located between the layeres of the catalyst and little remains on the external surface.15) For sensitivity reasons, a sample with 1 wt% Ni-loading was used. Comparison of the Ni2p3/2 peak intensity in the catalyst with that in a reference sample (which was also 1% Ni-loaded KNb03 with almost the same BET surface area as that of K4Nb6017) has shown that the surface concentration of Ni in the former is about 100 times less than that of the reference sampled EXAFS spectra for 1 wt% Ni-loaded samples both before and after the reduction procedure, as well as for Ni and NiO as standards, indicated that after reduction by H2 at 500°C for 2 b the loaded Ni was completely reduced to the metallic state.15) Even after reoxidation by 02 at 200°C for 1 h, most of the Ni remained metallic. (By XPS, the Ni, which remained on the external surface, was found to be in the oxidized form.) The formation of metallic nickel on a 0.1 wt% Ni-loaded catalyst was also confirmed by ESR measurements.7 The appearance of an intense resonance line after the reduction and reoxidation indicates the formation of ferromagnetic metallic nickel in the sample. [Pg.316]


See other pages where Nickel oxide surface areas is mentioned: [Pg.112]    [Pg.112]    [Pg.190]    [Pg.866]    [Pg.81]    [Pg.27]    [Pg.91]    [Pg.776]    [Pg.155]    [Pg.239]    [Pg.19]    [Pg.244]    [Pg.82]    [Pg.262]    [Pg.268]    [Pg.158]    [Pg.64]    [Pg.364]    [Pg.129]    [Pg.170]    [Pg.190]    [Pg.214]    [Pg.155]    [Pg.187]    [Pg.192]    [Pg.345]    [Pg.178]    [Pg.340]    [Pg.2]    [Pg.620]    [Pg.832]    [Pg.83]    [Pg.196]    [Pg.196]    [Pg.270]    [Pg.676]    [Pg.26]    [Pg.845]   
See also in sourсe #XX -- [ Pg.227 , Pg.228 ]




SEARCH



Nickel oxide

Nickel oxide oxidation

Nickel surface

Nickelic oxide

Nickelous oxide

© 2024 chempedia.info