Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon on nickel

Perrone, J., Fourest, B. Giffaut, E. 2001. Sorption of nickel on carbonate fluoroapatites. Journal of Colloid and Interface Science, 239, 303-313. [Pg.472]

These products derived from DuPont research consist of two or more flat metals joined metallurgically to yield clad plates fully meeting ASTM ASME codes. The expin-bonding process permits manuf of a wide variety of Detaclad products, ranging from a combination of more conventional metals and alloys, such as stainless steel and nickel on carbon steel, to noble metals on steel, stainless steel or other metals... [Pg.518]

Lipshutz has reported nickel on carbon catalysts for the amination of aryl chlorides [173]. The reactions were conducted with added DPPF as the ligand. The scope of the process is similar to that seen with homogeneous nickel species. Secondary amines provide good yields with electron-poor or electron-rich aryl chlorides, and anilines are suitable for coupling with a range of aryl chlorides. [Pg.129]

Our preliminary results of nickel on carbon-coated monolithic catalysts show that in a hydrogenation reaction it is five times more active than the corresponding nickel on alumina-washcoated monolithic catalyst without carbon coating. [Pg.605]

Heterogeneous-based nickel on carbon may also be used for Suzuki couplings of aryl chlorides (Equation 2.6) [15]. [Pg.29]

The Raney nickel catalyst can usually be stabilized by 2 to 4 wt% titanium and additionally activated by a small percentage of molybdenum [95] or platinum [97]. Although Raney nickel has excellent hydrogen adsorption ability and relatively large surface area, some disadvantages have also been reported, such as high electrolyte diffusion resistance due to low pore volume and small pore size [98, 99], and insufficient conductivity [97]. One type of mitigation is to support Raney nickel on carbon blacks, which will decrease its electrolyte diffusion resistance and increase its electrical conductivity [97]. [Pg.157]

Addition of an alkali metal hydroxide solution to an aqueous solution of a nickel(II) salt precipitates a finely-divided green powder. nickel(II) hydroxide NilOHfj on heating this gives the black oxide. NiO. which is also obtained by heating nickel(II) carbonate or the hydrated nitrate. Black nickel(II) sulphide, NiS, is obtained by passing hydrogen sulphide into a solution of a nickel(II) salt. [Pg.406]

Catalytic hydrogenation is mostly used to convert C—C triple bonds into C C double bonds and alkenes into alkanes or to replace allylic or benzylic hetero atoms by hydrogen (H. Kropf, 1980). Simple theory postulates cis- or syn-addition of hydrogen to the C—C triple or double bond with heterogeneous (R. L. Augustine, 1965, 1968, 1976 P. N. Rylander, 1979) and homogeneous (A. J. Birch, 1976) catalysts. Sulfur functions can be removed with reducing metals, e. g. with Raney nickel (G. R. Pettit, 1962 A). Heteroaromatic systems may be reduced with the aid of ruthenium on carbon. [Pg.96]

The predominant process for manufacture of aniline is the catalytic reduction of nitroben2ene [98-95-3] ixh. hydrogen. The reduction is carried out in the vapor phase (50—55) or Hquid phase (56—60). A fixed-bed reactor is commonly used for the vapor-phase process and the reactor is operated under pressure. A number of catalysts have been cited and include copper, copper on siHca, copper oxide, sulfides of nickel, molybdenum, tungsten, and palladium—vanadium on alumina or Htbium—aluminum spinels. Catalysts cited for the Hquid-phase processes include nickel, copper or cobalt supported on a suitable inert carrier, and palladium or platinum or their mixtures supported on carbon. [Pg.231]

Diacetone-L-sorbose (DAS) is oxidized at elevated temperatures in dilute sodium hydroxide in the presence of a catalyst (nickel chloride for bleach or palladium on carbon for air) or by electrolytic methods. After completion of the reaction, the mixture is worked up by acidification to 2,3 4,6-bis-0-isoptopyhdene-2-oxo-L-gulonic acid (2,3 4,6-diacetone-2-keto-L-gulonic acid) (DAG), which is isolated through filtration, washing, and drying. With sodium hypochlorite/nickel chloride, the reported DAG yields ate >90% (65). The oxidation with air has been reported, and a practical process was developed with palladium—carbon or platinum—carbon as catalyst (66,67). The electrolytic oxidation with nickel salts as the catalyst has also... [Pg.16]

Dry reduced nickel catalyst protected by fat is the most common catalyst for the hydrogenation of fatty acids. The composition of this type of catalyst is about 25% nickel, 25% inert carrier, and 50% soHd fat. Manufacturers of this catalyst include Calsicat (Mallinckrodt), Harshaw (Engelhard), United Catalysts (Sud Chemie), and Unichema. Other catalysts that stiH have some place in fatty acid hydrogenation are so-called wet reduced nickel catalysts (formate catalysts), Raney nickel catalysts, and precious metal catalysts, primarily palladium on carbon. The spent nickel catalysts are usually sent to a broker who seUs them for recovery of nickel value. Spent palladium catalysts are usually returned to the catalyst suppHer for credit of palladium value. [Pg.91]

Palladium and platinum (5—10 wt % on activated carbon) can be used with a variety of solvents as can copper carbonate on siHca and 60 wt % nickel on kieselguhr. The same is tme of nonsupported catalysts copper chromite, rhenium (VII) sulfide, rhenium (VI) oxide, and any of the Raney catalysts, copper, iron, or nickel. [Pg.200]

Table 1. Processing Cycle for Engineering Nickel on Low Carbon Steel ... Table 1. Processing Cycle for Engineering Nickel on Low Carbon Steel ...
FIG. 10-184 Cost of shop-fabricated tanks in mid-1980 with V4-in walls. Multiplying factors on carbon steel costs for other materials are carbon steel, 1.0 mbber-lined carbon steel, 1.5 alnminnm, 1.6 glass-lined carbon steel, 4.5 and fiber-reinforced plastic, 0.75 to 1.5. Multiplying factors on type 316 stainless-steel costs for other materials are 316 stainless steel, 1.0 Monel, 2.0 Inconel, 2.0 nickel, 2.0 titanium, 3.2 and Hastelloy C, 3.8. Multiplying factors for wall thicknesses different from V4 in are ... [Pg.1021]

Reaction of -picoline with a nickel-alumina catalyst has been reported to give a mixture of four isomeric dimethylbipyridines, one of which has been identified at 6,6 -dimethyl-2,2 -bipyridine. With palladium-on-carbon, 2,4-lutidine was found to be more reactive than pyridine,and the isolated biaryl has been assigned the structure (2). However, some confusion arises from the statement that this... [Pg.182]

Starting material Nickel-alumina Palladium- on-carbon Degassed Raney nickeN ... [Pg.187]

Sufficient data are not yet available to allow evaluation of the relative merits of palladium-on-carbon and degassed Raney nickel catalysts. Comparable yields of 2,2 -biquinolines have been obtained by both methods under suitable conditions but the percentage conversions with degassed Raney nickel have been found to be much lower, reflecting the extent of side reactions with this catalyst. However, work in this laboratory has shown that the reaction of quinoline with palladium-on-carbon is not free from complications for example, at least three products in addition to 2,2 -biquinoline have been detected by paper chromatography. [Pg.188]

Isoquinoline failed to react when refluxed over palladium-on-carbon, but with degassed Raney nickel it underw cnt extensive de-... [Pg.188]

Several products other than 2,2 -biaryls have been isolated following reaction of pyridines with metal catalysts. From the reaction of a-picoline with nickel-alumina, Willink and Wibaut isolated three dimethylbipyridines in addition to the 6,6 -dimethyl-2,2 -bipyridine but their structures have not been elucidated. From the reaction of quinaldine with palladium-on-carbon, Rapoport and his co-workers " obtained a by-product which they regarded as l,2-di(2-quinolyl)-ethane. From the reactions of pyridines and quinolines with degassed Raney nickel several different types of by-product have been identified. The structures and modes of formation of these compounds are of interest as they lead to a better insight into the processes occurring when pyridines interact with metal catalysts. [Pg.197]

Reduction of unsaturated aldehydes seems more influenced by the catalyst than is that of unsaturated ketones, probably because of the less hindered nature of the aldehydic function. A variety of special catalysts, such as unsupported (96), or supported (SJ) platinum-iron-zinc, plalinum-nickel-iron (47), platinum-cobalt (90), nickel-cobalt-iron (42-44), osmium (<55), rhenium heptoxide (74), or iridium-on-carbon (49), have been developed for selective hydrogenation of the carbonyl group in unsaturated aldehydes. None of these catalysts appears to reduce an a,/3-unsaturated ketonic carbonyl selectively. [Pg.71]

Reductive alkylation by alcohol solvents may occur as an unwanted side reaction 22,39), and it is to avoid this reaction that Freifelder (20) recom mends ruthenium instead of nickel in pyridine hydrogenation. Alkylation by alcohols may occur with surprising ease 67). Reduction of 18 in ethanol over 10% palladium-on carbon to an amino acid, followed bycyclization with /V,/V-dicyclohexylcarbodiimide gave a mixture of 19 and 20 wiih the major product being the /V-ethyl derivative 49,50). By carrying out the reduction in acetic acid, 20 was obtained as the sole cyclized product 40). [Pg.90]

Catalysts show remarkable product variation in hydrogenation of simple nitriles. Propionitrile, in neutral, nonreactive media, gives on hydrogenation over rhodium-on-carbon high yields of dipropylamine, whereas high yields of tripropylamine arise from palladium or platinum-catalyzed reductions (71). Parallel results were later found for butyronitrile (2S) and valeronitrile (74) but not for long-chain nitriles. Good yields of primary aliphatic amines can be obtained by use of cobalt, nickel, nickel boride, rhodium, or ruthenium in the presence of ammonia (4J 1,67,68,69). [Pg.97]

Palladium proved especially useful in the hydrogenation of 2-hydroxy-3-nitropropanoic acid. Reduction over palladium-on-carbon gave pure, powdery isoserine, whereas platinum failed to reduce the nitro function under neutral or acidic conditions reduction over Raney nickel gave a bright green powder (96). [Pg.105]

Formation of diamines from dinitro compounds, which are unable to interact intramolecularly, presents no problem. Very large volumes of diaminotoluene, a precursor to toluene diisocyanate, are produced by hydrogenation of dinitrotoluene over either nickel or palladium-on-carbon. Selective hydrogenation of one or the other of two nitro groups is much more of a challenge, but a number of outstanding successes have been recorded. A case in point is the hydrogenation of 2,4-dinitroaniline (11) to 4-nitro-l,2-benzenediamine (12) (2) or to 2-nitro-l,4-benzenediamine (10). [Pg.111]

Because of the industrial magnitude of these processes, many catalysts have been examined with variations in metal distribution, pore size, and alkalinity. In most synthetic work where catalyst life and small variations in yield are not of great importance, most palladium-on-carbon or -on-alumina powder catalysts will be found satisfactory for conversion of phenols to cyclohexanones. Palladium has a relatively low tendency to reduce aliphatic ketones, and a sharp decrease in the rate of absorption occurs at about 2 mol of consumed hydrogen. Nickel may also be used but overhydrogenation is more apt to occur. [Pg.127]

Both regio- and stereospecificiiy may be influenced by the catalyst and by alkali. Raney nickel opens ce>2,3-diphenylbul-2-ene epoxide with retention of configuration to give cr3 f/iro-2,3-diphenylbutan-2-ol, whereas palladium-on-carbon gives the inverted threo isomer. If a small amount of alkali is added to nickel-catalyzed reductions, nickel too gives the threo isomer (d5). [Pg.138]

The effect of nickel on the activity coefficient of carbon will be neglected and the effect of chromium will be taken from the value in the liquid state. From the values quoted above, to = —4-3 at 1 600°C, and assuming that the effect of chromium is simply to change the heat of solution of carbon... [Pg.1108]


See other pages where Carbon on nickel is mentioned: [Pg.544]    [Pg.378]    [Pg.136]    [Pg.381]    [Pg.518]    [Pg.336]    [Pg.544]    [Pg.378]    [Pg.136]    [Pg.381]    [Pg.518]    [Pg.336]    [Pg.277]    [Pg.14]    [Pg.346]    [Pg.52]    [Pg.52]    [Pg.150]    [Pg.158]    [Pg.483]    [Pg.315]    [Pg.189]    [Pg.22]    [Pg.60]    [Pg.301]   
See also in sourсe #XX -- [ Pg.136 , Pg.381 ]




SEARCH



Carbon deposition on nickel

Carbon deposition on nickel catalysts

Carbon formation on nickel

Carbon monoxide on nickel oxide

Carbon-nickel

Nickel carbonate

© 2024 chempedia.info