Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel intermetallics

Transformed rare earth and actinide intermetallic compounds are shown to be very active as catalysts for the synthesis of hydrocarbons from CO2 and hydrogen. Transformed LaNis and ThNis the most active of the materials studied they have a turnover number for CH formation of 2.7 and 4.7 X 10 sec at 205°C, respectively, compared with I X 10 sec for commercial silica-supported nickel catalysts. Nickel intermetallics and CeFe2 show high selectivity for CHj formation. ThFcs shows substantial formation of C2H6 (15%) as well as CHi,. The catalysts are transformed extensively during the experiment into transition metal supported on rare earth or actinide oxide. Those mixtures are much more active than supported catalysts formed by conventional wet chemical means. [Pg.8]

Titanium/nickel intermetallic phases (A2B and AB type) were developed in the 1970s with great assiduity when the aim was hydrogen storage for road vehicles with hydrogen combustion engines (70). [Pg.115]

Appllca.tlons. The principal appHcations of nickel-base superalloys are in gas turbines, where they are utilized as blades, disks, and sheet metal parts. Abcraft gas turbines utilized in both commercial and military service depend upon superalloys for parts exposed to peak metal temperatures in excess of 1000°C. Typical gas turbine engines produced in the United States in 1990 utilized nickel and cobalt-base superalloys for 46% of total engine weight (41). However, programs for future aerospace propulsion systems emphasize the need for lightweight materials having greater heat resistance. For such apphcations, intermetallics matrix composites and ceramic composites are expected to be needed. [Pg.123]

A particularly striking recent application was by Deevi and Sikka (1997) they developed an industrial process for casting intermetallics, especially nickel alumi-nides, so designed (by modifying the furnace-loading sequence) that the runaway temperature rise which had made normal casting particularly dangerous was avoided. [Pg.432]

Intermetallics also represent an ideal system for study of shock-induced solid state chemical synthesis processes. The materials are technologically important such that a large body of literature on their properties is available. Aluminides are a well known class of intermetallics, and nickel aluminides are of particular interest. Reactants of nickel and aluminum give a mixture with powders of significantly different shock impedances, which should lead to large differential particle velocities at constant pressure. Such localized motion should act to mix the reactants. The mixture also involves a low shock viscosity, deformable material, aluminum, with a harder, high shock viscosity material, nickel, which will not flow as well as the aluminum. [Pg.184]

CHEMICAL BONDING AND ELASTIC CONSTANTS OF NICKEL-BASED INTERMETALLICS... [Pg.389]

Another type of nickel alloy with which problems of intergranular corrosion may be encountered is that based on Ni-Cr-Mo containing about 15% Cr and 15% Mo. In this type of alloy the nature of the grain boundary precipitation responsible for the phenomenon is more complex than in Ni-Cr-Fe alloys, and the precipitates that may form during unfavourable heat treatment are not confined to carbides but include at least one inter-metallic phase in addition. The phenomenon has been extensively studied in recent years . The grain boundary precipitates responsible are molybdenum-rich M C carbide and non-stoichiometric intermetallic ix... [Pg.783]

Another application of the electrolysis of tantalum and niobium in fluoride melts is in the preparation of intermetalic compounds as a result of the interaction between the electrochemically precipitating metal and the cathode material. Based on an investigation of the electrochemical reduction of K2TaF7 or K2NbF7 in a LiF - NaF melt on nickel cathodes, Taxil and Qiao [565] determined the appropriate conditions for the formation of TaNi3 or NbNi3 in the form of stable phases in the bulk of the obtained layer. [Pg.324]

The anode seal which closes the sodium compartment is a nickel—chromium alloy (Inconel 600). The application of Inconel 600 minimizes the growth of thick inter-metallics and it was shown that seals of this material have been operated for over three years. Contrarily to Inconel, the application of mild steel as the anode seal material gave a life of only 6000 h due to gross intermetallic growth which caused sodium attack of this intermetallic layer in the mild steel. [Pg.576]

Modem machining deals with an increasingly wide range of materials which includes, in addition to the traditional metals, high-chromium and nickel stainless steels, titanium, intermetallics, refractory metals, ceramics, glasses, fiber-reinforced composites, and many others. These materials have widely different properties. They react differently to machining and each presents a special machining problem. [Pg.453]

The alkali metals do not form intermetallic compounds with the transition metals. Both Na and Li dissolve only ppm quantities of most transition metals, although the solubilities are greater in Li. Nickel is very soluble in Li (900 ppm at 600°C), but no intermetallic compound forms. Intermetallic compound formation is, however, observed between Li and the noble metals Rh, Ir, Pd and Pt, so this section concentrates on the preparation of these compounds. [Pg.463]

Skeletal copper is best made from the CuA12 intermetallic compound which has very close to 50 wt% aluminum in the alloy and gives an active and selective catalyst [27-29], Skeletal nickel is also best made from an alloy of about 50 wt% aluminum [25] however, in this case, the alloy consists of more than one intermetallic phase, the combination of which provides the best activity while maintaining adequate strength in the catalytic residue. The most active skeletal cobalt catalysts are made from an alloy of about 60-65 wt% aluminum, which consists of two intermetallic phases, Co2A19 + Co4A113 [30],... [Pg.142]

Individually indexed alloys or intermetallic compounds are Aluminium amalgam, 0051 Aluminium-copper-zinc alloy, 0050 Aluminium-lanthanum-nickel alloy, 0080 Aluminium-lithium alloy, 0052 Aluminium-magnesium alloy, 0053 Aluminium-nickel alloys, 0055 Aluminium-titanium alloys, 0056 Copper-zinc alloys, 4268 Ferromanganese, 4389 Ferrotitanium, 4391 Lanthanum-nickel alloy, 4678 Lead-tin alloys, 4883 Lead-zirconium alloys, 4884 Lithium-magnesium alloy, 4681 Lithium-tin alloys, 4682 Plutonium bismuthide, 0231 Potassium antimonide, 4673 Potassium-sodium alloy, 4646 Silicon-zirconium alloys, 4910... [Pg.51]

Researchers have tried to fabricate plates using many different metals— mainly, stainless steel, aluminum alloys, titanium alloys, nickel alloys, copper alloys, intermetallic alloys, and metal-based composites such as carbon fiber-reinforced aluminum alloys, carbon fiber reinforced copper alloys, etc. [26]. Although Ta, Hf, Nb, Zr, and Ti metals show good corrosion resistance and chemical stability [6], the cost of fhese metals is too high for them to be used as materials in metal plates. That is why relatively cheaper iron-based alloys, particularly stainless steel, have been popularly studied as plate material. In the following secfions, we will infroduce sfainless sfeel (SS) and SS plates, which have been extensively investigated and show promise for the final applications [6,11]. [Pg.326]


See other pages where Nickel intermetallics is mentioned: [Pg.550]    [Pg.13]    [Pg.105]    [Pg.113]    [Pg.643]    [Pg.550]    [Pg.13]    [Pg.105]    [Pg.113]    [Pg.643]    [Pg.125]    [Pg.197]    [Pg.7]    [Pg.15]    [Pg.165]    [Pg.48]    [Pg.280]    [Pg.31]    [Pg.353]    [Pg.356]    [Pg.184]    [Pg.389]    [Pg.390]    [Pg.394]    [Pg.761]    [Pg.784]    [Pg.910]    [Pg.1037]    [Pg.511]    [Pg.514]    [Pg.365]    [Pg.175]    [Pg.293]    [Pg.164]    [Pg.455]    [Pg.184]    [Pg.618]    [Pg.142]    [Pg.177]    [Pg.571]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Nickel-aluminum-based intermetallics

© 2024 chempedia.info