Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminium titanium

Other more highly alloyed types, of which a typical example is given in Table 3.11, have the designation of precipitation hardening martensitic. Relative to the simple 13% chromium types they have a substantial nickel content and low carbon with additions from molybdenum, copper, aluminium, titanium and niobium. These offer improved corrosion resistance, strength, toughness, weldability and fabrication properties, but not always together. [Pg.522]

In its general corrosion behaviour, beryllium exhibits characteristics very similar to those of aluminium. Like aluminium, the film-free metal is highly active and readily attacked in many environments. Beryllium oxide, however, like alumina, is, a very stable compound (standard free energy of formation = —579kJ/mol), with a bulk density of 3-025g/cm as compared with 1 -85 g/cm for the pure metal, and with a high electronic resistivity of about 10 flcm at 0°C. In fact, when formed, the oxide confers the same type of spurious nobility on beryllium as is found, for example, with aluminium, titanium and zirconium. [Pg.833]

In its resistance to liquid metals, titanium shows variable behaviour, the rate of attack often depending upon temperature and increasing with rise in temperature. By thickening the surface film of oxide, resistance to attack is enhanced, and, for example, repeated repair of the surface film renders titanium resistant, on a limited-time basis, to molten zinc in galvanising baths. A surface-oxide thickening technique also enables titanium to be employed in contact with molten aluminium. Titanium equipment is also used in applications involving lead-tin solders, and it is resistant to mercury, at least up to 150 C. [Pg.868]

Resistance to abrasion The resistance to abrasion of electroless nickel-phosphorus hardened to 600 Hy, assessed by Taber abrasion tests, has been found to be double that of electroplated nickel However, electroless nickel coatings are not suitable for applications where two electroless nickel surfaces rub together without lubrication unless the values of hardness are made to differ by over 200 Hy units. Galling of aluminium, titanium or stainless steel may be overcome by applying electroless nickel to one of the two mating surfaces. [Pg.538]

Chlorine has caused numerous accidents with metals. Beryllium becomes incandescent if it is heated in the presence of chlorine. Sodium, aluminium, aluminium/titanium alloy, magnesium (especially if water traces are present) combust in contact with chlorine, if they are in the form of powder. There was an explosion reported with molten aluminium and liquid chlorine. The same is true for boron (when it is heated to 400°C), active carbon and silicon. With white phosphorus there is a detonation even at -34°C (liquid chlorine). [Pg.187]

Aluminium-titanium alloys Oxidants Hafnium Alone, etc. [Pg.1716]

Aluminium-titanium alloys See Aluminium-titanium alloys Oxidants... [Pg.1842]

Yoshimura et al. [193] carried out microdeterminations of phosphate by gel-phase colorimetry with molybdenum blue. In this method phosphate reacted with molybdate in acidic conditions to produce 12-phosphomolybdate. The blue species of phosphomolybdate were reduced by ascorbic acid in the presence of antimonyl ions and adsorbed on to Sephadex G-25 gel beads. Attenuation at 836 and 416 nm (adsorption maximum and minimum wavelengths) was measured, and the difference was used to determine trace levels of phosphate. The effect of nitrate, sulfate, silicic acid, arsenate, aluminium, titanium, iron, manganese, copper, and humic acid on the determination were examined. [Pg.100]

Sulphuric acid is the largest volume chemical in the world with an annual production of about 180 mill, t/year which is used primarily for phosphate fertilizers, petroleum alkylation, copper ore leaching and in smaller quantities for a number of other purposes (pulp and paper, other acids, aluminium, titanium dioxide, plastics, synthetic fibres, dyestuffs, sulphonation etc.). The major sulphur sources for sulphuric acid production are sulphur recovered from hydrocarbon processing in the refineries and from desulphurisation of natural gas, SO2 from metallurgical smelter operations, spent alkylation acid, and to a minor extent mined elemental sulphur and pyrites. A simplified flow sheet of a modem double-absorption plant for sulphuric acid production from sulphur is shown in Fig. 1. [Pg.312]

Individually indexed alloys or intermetallic compounds are Aluminium amalgam, 0051 Aluminium-copper-zinc alloy, 0050 Aluminium-lanthanum-nickel alloy, 0080 Aluminium-lithium alloy, 0052 Aluminium-magnesium alloy, 0053 Aluminium-nickel alloys, 0055 Aluminium-titanium alloys, 0056 Copper-zinc alloys, 4268 Ferromanganese, 4389 Ferrotitanium, 4391 Lanthanum-nickel alloy, 4678 Lead-tin alloys, 4883 Lead-zirconium alloys, 4884 Lithium-magnesium alloy, 4681 Lithium-tin alloys, 4682 Plutonium bismuthide, 0231 Potassium antimonide, 4673 Potassium-sodium alloy, 4646 Silicon-zirconium alloys, 4910... [Pg.51]

Material Iron Aluminium Titanium Potassium sulflde... [Pg.87]

In order to prevent the reduction between iron(II) and formaldoxime occurring, another iron complexing agent (potassium cyanide) was used in the presence of a reductant (ascorbic acid) that reduces iron(III) to iron(II). Aluminium, titanium, uranium, molybdenum and chromium also form light-coloured complexes that normally do not interfere in the determination of manganese in water or plant material by this method. If the aluminium or titanium concentrations are higher than 40 ppm an additional masking flow of tartrate is recommended [31]. [Pg.181]

The traditional or conventional ceramics are generally in monolithic form. These include bricks, pottery, tiles and a variety of art objects. The advanced or high-performance monolithic ceramic materials represent a new and improved class of ceramic materials where, frequently, some sophisticated chemical processing route is used to obtain them. Generally, their characteristics are based on the high quality and purity of the raw materials used. Examples of these high-performance ceramics include oxides, nitrides, carbides of silicon, aluminium, titanium and zirconium, alumina, etc. [Pg.58]


See other pages where Aluminium titanium is mentioned: [Pg.127]    [Pg.335]    [Pg.6]    [Pg.562]    [Pg.1313]    [Pg.343]    [Pg.344]    [Pg.357]    [Pg.487]    [Pg.41]    [Pg.1348]    [Pg.1409]    [Pg.1914]    [Pg.1]    [Pg.95]    [Pg.266]    [Pg.140]    [Pg.134]    [Pg.617]    [Pg.37]    [Pg.1392]    [Pg.1455]    [Pg.1929]    [Pg.1929]    [Pg.1940]    [Pg.2002]    [Pg.2043]    [Pg.2237]    [Pg.34]    [Pg.1348]    [Pg.1409]    [Pg.1914]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Aluminium titanium aluminides

Boron/titanium/aluminium systems

Iron, aluminium and titanium

Oxidation titanium aluminium carbides

Titanium aluminium methylene

© 2024 chempedia.info