Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel atmosphere

Appreciable quantities are also obtained as a by-product in the manufacture of hydrogen from naphtha-gaseous hydrocarbons. In this process the gaseous hydrocarbon and superheated steam under a pressure of about 10 atmospheres and at a temperature of 1000 K are passed over a nickel-chromium catalyst. Carbon monoxide and hydrogen are produced ... [Pg.180]

The selective addition of the second HCN to provide ADN requires the concurrent isomerisation of 3PN to 4-pentenenitrile [592-51 -8] 4PN (eq. 5), and HCN addition to 4PN (eq. 6). A Lewis acid promoter is added to control selectivity and increase rate in these latter steps. Temperatures in the second addition are significandy lower and practical rates may be achieved above 20°C at atmospheric pressure. A key to the success of this homogeneous catalytic process is the abiUty to recover the nickel catalyst from product mixture by extraction with a hydrocarbon solvent. 2-Methylglutaronitrile [4553-62-2] MGN, ethylsuccinonitfile [17611-82-4] ESN, and 2-pentenenitrile [25899-50-7] 2PN, are by-products of this process and are separated from adiponitrile by distillation. [Pg.221]

The reaction is initiated with nickel carbonyl. The feeds are adjusted to give the bulk of the carbonyl from carbon monoxide. The reaction takes place continuously in an agitated reactor with a Hquid recirculation loop. The reaction is mn at about atmospheric pressure and at about 40°C with an acetylene carbon monoxide mole ratio of 1.1 1 in the presence of 20% excess alcohol. The reactor effluent is washed with nickel chloride brine to remove excess alcohol and nickel salts and the brine—alcohol mixture is stripped to recover alcohol for recycle. The stripped brine is again used as extractant, but with a bleed stream returned to the nickel carbonyl conversion unit. The neutralized cmde monomer is purified by a series of continuous, low pressure distillations. [Pg.155]

In this pyrolysis, sub atmospheric partial pressures are achieved by employing a diluent such as steam. Because of the corrosive nature of the acids (HE and HCl) formed, the reactor design should include a platinum-lined tubular reactor made of nickel to allow atmospheric pressure reactions to be mn in the presence of a diluent. Because the pyrolysate contains numerous by-products that adversely affect polymerization, the TFE must be purified. Refinement of TFE is an extremely complex process, which contributes to the high cost of the monomer. Inhibitors are added to the purified monomer to avoid polymerization during storage terpenes such as t7-limonene and terpene B are effective (10). [Pg.348]

Goal Upgrading via Fischer-Tropsch. The synthesis of methane by the catalytic reduction of carbon monoxide and hydrogen over nickel and cobalt catalysts at atmospheric pressure was reported in 1902 (11). [Pg.79]

From 760 to 960°C, circulating fans, normally without baffles, are used to improve temperature uniformity and overall heat transfer by adding some convection heat transfer. They create a directional movement of the air or atmosphere but not the positive flow past the heating elements to the work as in a convection furnace. Heating elements ate commonly chrome—nickel alloys in the forms described previously. Sheathed elements are limited to the very low end of the temperature range, whereas at the upper end silicon carbide resistors may be used. In this temperature range the selection of heating element materials, based on the combination of temperature and atmosphere, becomes critical (1). [Pg.137]

Chrome—nickel alloy heating elements that commonly ate used in low temperature furnaces are not suitable above the very low end of the range. Elements commonly used as resistors are either silicon carbide, carbon, or high temperature metals, eg, molybdenum and tungsten. The latter impose stringent limitations on the atmosphere that must be maintained around the heating elements to prevent rapid element failure (3), or the furnace should be designed to allow easy, periodic replacement. [Pg.137]

Finally, selective hydrogenation of the olefinic bond in mesityl oxide is conducted over a fixed-bed catalyst in either the Hquid or vapor phase. In the hquid phase the reaction takes place at 150°C and 0.69 MPa, in the vapor phase the reaction can be conducted at atmospheric pressure and temperatures of 150—170°C. The reaction is highly exothermic and yields 8.37 kJ/mol (65). To prevent temperature mnaways and obtain high selectivity, the conversion per pass is limited in the Hquid phase, and in the vapor phase inert gases often are used to dilute the reactants. The catalysts employed in both vapor- and Hquid-phase processes include nickel (66—76), palladium (77—79), copper (80,81), and rhodium hydride complexes (82). Complete conversion of mesityl oxide can be obtained at selectivities of 95—98%. [Pg.491]

Ca.rbonylProcess. Cmde nickel also can be refined to very pure nickel by the carbonyl process. The cmde nickel and carbon monoxide (qv) react at ca 100°C to form nickel carbonyl [13463-39-3] Ni(CO)4, which upon further heating to ca 200—300°C, decomposes to nickel metal and carbon monoxide. The process is highly selective because, under the operating conditions of temperature and atmospheric pressure, carbonyls of other elements that are present, eg, iron and cobalt, are not readily formed. [Pg.3]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

A process based on a nickel catalyst, either supported or Raney type, is described ia Olin Mathieson patents (26,27). The reduction is carried out ia a continuous stirred tank reactor with a concentric filter element built iato the reactor so that the catalyst remains ia the reaction 2one. Methanol is used as a solvent. Reaction conditions are 2.4—3.5 MPa (350—500 psi), 120—140°C. Keeping the catalyst iaside the reactor iacreases catalyst lifetime by maintaining a hydrogen atmosphere on its surface at all times and minimises handling losses. Periodic cleaning of the filter element is required. [Pg.238]

Shipment, Stora.ge, ndPrice. l-Methyl-2-pyrrohdinone is available in tank cars or tank trailers as well as in dmms. Shipping containers are normally of unlined steel. Rubber hose is unsuitable for handling standard steel pipe or braided steel hose is acceptable. Ordinarily 1020 carbon steel (0550) is satisfactory as a storage material. Stainless-steel 304 and 316, nickel, and aluminum are also suitable. MethylpyrroHdinone is hygroscopic and must be protected from atmospheric moisture. In September 1994, NMP was Hsted at 3.89/kg. [Pg.363]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

Eor many polymeri2ations, MEHQ need not be removed instead, polymeri2ation initiators are added. Vinyhdene chloride from which the inhibitor has been removed should be refrigerated in the dark at —10° C, under a nitrogen atmosphere, and in a nickel-lined or baked phenolic-lined storage tank. If not used within one day, it should be reinhibited. [Pg.428]

Other alkaline primary cells couple zinc with oxides of mercury or silver and some even use atmospheric oxygen (zinc—air cell). Frequendy, zinc powder is used in the fabrication of batteries because of its high surface area. Secondary (rechargeable) cells with zinc anodes under development are the alkaline zinc—nickel oxide and zinc—chlorine (see Batteries). [Pg.398]

Lateritic Ores. The process used at the Nicaro plant in Cuba requires that the dried ore be roasted in a reducing atmosphere of carbon monoxide at 760°C for 90 minutes. The reduced ore is cooled and discharged into an ammoniacal leaching solution. Nickel and cobalt are held in solution until the soflds are precipitated. The solution is then thickened, filtered, and steam heated to eliminate the ammonia. Nickel and cobalt are precipitated from solution as carbonates and sulfates. This method (8) has several disadvantages (/) a relatively high reduction temperature and a long reaction time (2) formation of nickel oxides (J) a low recovery of nickel and the contamination of nickel with cobalt and (4) low cobalt recovery. Modifications to this process have been proposed but all include the undesirable high 760°C reduction temperature (9). [Pg.371]

The stainless steels contain appreciable amounts of Cr, Ni, or both. The straight chrome steels, types 410, 416, and 430, contain about 12, 13, and 16 wt % Cr respectively. The chrome—nickel steels include type 301 (18 wt % Cr and 9 wt % Ni), type 304 (19 wt % Cr and 10 wt % Ni), and type 316 (19 wt % Cr and 12 wt % Ni). Additionally, type 316 contains 2—3 wt % Mo which gready improves resistance to crevice corrosion in seawater as well as general corrosion resistance. AH of the stainless steels offer exceptional improvement in atmospheric conditions. The corrosion resistance results from the formation of a passive film and, for this reason, these materials are susceptible to pitting corrosion and to crevice corrosion. For example, type 304 stainless has very good resistance to moving seawater but does pit in stagnant seawater. [Pg.282]


See other pages where Nickel atmosphere is mentioned: [Pg.139]    [Pg.139]    [Pg.258]    [Pg.439]    [Pg.196]    [Pg.870]    [Pg.149]    [Pg.180]    [Pg.330]    [Pg.110]    [Pg.115]    [Pg.131]    [Pg.134]    [Pg.136]    [Pg.5]    [Pg.206]    [Pg.208]    [Pg.220]    [Pg.337]    [Pg.358]    [Pg.164]    [Pg.143]    [Pg.281]    [Pg.412]    [Pg.430]    [Pg.295]    [Pg.548]    [Pg.552]    [Pg.388]    [Pg.377]    [Pg.282]    [Pg.477]    [Pg.30]    [Pg.155]   
See also in sourсe #XX -- [ Pg.844 , Pg.856 ]




SEARCH



© 2024 chempedia.info