Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron activation application

B) Fujii, I., A. Tani, H. Muto, K. Ogawa, and M. Sato A Rapid Method for Praseodymium by 14 MeV Neutron Activation. Application of Gamma-Gamma Coincidence Method to the Rapid Determination of Praseodymium. J. At. Energy Soc. Japan 5, No. 3, 218 (1963). [Pg.90]

Three common quantitative applications of radiochemical methods of analysis are considered in this section the direct analysis of radioactive isotopes by measuring their rate of disintegration, neutron activation, and the use of radioactive isotopes as tracers in isotope dilution. [Pg.644]

One of the important advantages of NAA is its applicability to almost all elements in the periodic table. Another advantage of neutron activation is that it is nondestructive. Consequently, NAA is an important technique for analyzing archaeological and forensic samples, as well as works of art. [Pg.646]

Another application involves the measurement of copper via the radioisotope Cu (12.6-hour half-life). Since Cu decays by electron capture to Ni ( Cu Ni), a necessary consequence is the emission of X rays from Ni at 7.5 keV. By using X-ray spectrometry following irradiation, sensitive Cu analysis can be accomplished. Because of the short range of the low-energy X rays, near-surface analytical data are obtained without chemical etching. A combination of neutron activation with X-ray spectrometry also can be applied to other elements, such as Zn and Ge. [Pg.678]

H. Kramer, S. Semel J.E. Abel, Trace Elemental Survey Analysis of Trinitrotoluene , PATR 4767 (1975) (An evaluation of the applicability of spark source mass spectrometry and thermal neutron activation for the detn of origin-related trace elemental impurities in TNT) 10) C. Ribando J. Haber-man, Origin-Identification of Explosives Via Their Composite Impurity Profiles I. The... [Pg.141]

A. Harrison, AnalChem 41 (1969), 1396 8) V. Guinn et al, Applications of Neutron Activation Analysis in Scientific Crime Investigations , Gulf General Atomic Corp Rept GA-9807 (1970) 9) K. Pillay et al, Nuclear... [Pg.389]

Byrne AR 1993) Review of neutron activation analysis in the standardization and study of ref erence materials including its application to radionuclide reference materials. Fresenius J Anal Chem 345 144-151. [Pg.43]

This section contains further two typical certification applications and a table presenting selected examples for environmental and biological RMs from major producers. This is followed by a more detailed treatment of the use of neutron activation analysis methods. [Pg.63]

Neutron activation analysis (NAA) is a supreme technique for elemental analysis (Section 8.6.1). Other nuclear analytical techniques, such as PIXE (Section 8.4.2) and RBS, also find application in investigations of diffusion processes [445]. [Pg.663]

Harbottle, G. (1990), Neutron activation analysis in archaelogical chemistry, in Yoshihara, K. (ed.), Chemical Applications of Nuclear Probes, Topics in Current Chemistry, Springer, Berlin, Vol. 157, 57-91. [Pg.582]

Calcium-selective electrodes have long been in use for the estimation of calcium concentrations - early applications included their use in complexometric titrations, especially of calcium in the presence of magnesium (42). Subsequently they have found use in a variety of systems, particularly for determining stability constants. Examples include determinations for ligands such as chloride, nitrate, acetate, and malonate (mal) (43), several diazacrown ethers (44,45), and methyl aldofuranosides (46). Other applications have included the estimation of Ca2+ levels in blood plasma (47) and in human hair (where the results compared satisfactorily with those from neutron activation analysis) (48). Ion-selective electrodes based on carboxylic polyether ionophores are mentioned in Section IV.B below. Though calcium-selective electrodes are convenient they are not particularly sensitive, and have slow response times. [Pg.258]

Iieser et al. [628] studied the application of neutron activation analysis to the determination of trace elements in seawater. The rare earths included in this study were cerium and europium. The element concerned were adsorbed onto charcoal. Between 75% and 100% of the elements were adsorbed onto the charcoal which was then subjected to analysis by neutron activation analysis. Cerium (300 p,g/l) and europium (0.00082 pg/1) were found in North Sea water by this method. [Pg.212]

Table 5.11. Application of neutron activation analysis to the determination of metals in seawater... [Pg.281]

The application of neutron activation techniques to the measurement of trace metals in the marine environment has been reviewed by Robertson and Carpenter [815,816]. [Pg.281]

It was not until the application of neutron activation analysis (NAA) that the problem of overlapping sources could be tackled. NAA is a highly sensitive and essentially non-destructive technique, although samples have to be taken which remain radioactive for some time after analysis. The use of NAA in characterizing obsidian was first demonstrated in the early 1970s (Aspinall... [Pg.84]

Allen, R.O., Luckenbach, A.H. and Holland, C.G. (1975). The application of instrumental neutron activation analysis to a study of prehistoric steatite artifacts and source material. Archaeometry 17 69-83. [Pg.139]

Bakraji, E. H., Othman, I., Sarhil, A., and Al-Somel, N. (2002). Application of instrumental neutron activation analysis and multivariate statistical methods to archaeological Syrian ceramics. Journal of Trace and Microprobe Techniques 20 57-68. [Pg.351]

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

An application of neutron activation analysis for the determination of inorganic ions in LB multilayers was reported. A special technique for the removal of... [Pg.95]

The isotope cahfomium-252 undergoes spontaneous fission generating neutrons. It serves as a convenient source of neutrons for neutron activation analysis, neutron moisture gages, and in the determination of water and oilbearing layers in well-logging. It is expected to have many other potential applications, including synthesis of other heavy isotopes. [Pg.179]

Ruthenium and its compounds are analyzed by flame AA method using nitrous oxide-acetylene flame. ICP-AES, ICP/MS, and neutron activation analysis are also applicable. The metal or its insoluble compounds may be solubilized by fusion with alkah and leached with water. [Pg.804]

Tungsten may be analyzed by flame AA and ICP-AES. For sucb analyses, tbe metal, its compounds, or alloys are solubilized by digestion with aqua regia, nitric acid-perchloric acid, or other acid combinations and diluted. Other instrumental techniques such as x-ray fluorescence and neutron activation analysis also are applicable. [Pg.953]

The metal can he analyzed hy lame-AA and ICP-AES methods. Ytterbium or its compounds are dissolved by acid digestion and diluted before such analysis. X-ray methods and neutron activation analysis are also applicable. [Pg.976]

Recently, Heydom has dealt extensively with the various aspects of the application of NAA to the analysis of biological materials. The usefulness of neutron activation analysis for the determination of protein-boxmd elements in human serum has been demonstrated by Woittiez... [Pg.166]

The most frequently applied analytical methods used for characterizing bulk and layered systems (wafers and layers for microelectronics see the example in the schematic on the right-hand side) are summarized in Figure 9.4. Besides mass spectrometric techniques there are a multitude of alternative powerful analytical techniques for characterizing such multi-layered systems. The analytical methods used for determining trace and ultratrace elements in, for example, high purity materials for microelectronic applications include AAS (atomic absorption spectrometry), XRF (X-ray fluorescence analysis), ICP-OES (optical emission spectroscopy with inductively coupled plasma), NAA (neutron activation analysis) and others. For the characterization of layered systems or for the determination of surface contamination, XPS (X-ray photon electron spectroscopy), SEM-EDX (secondary electron microscopy combined with energy disperse X-ray analysis) and... [Pg.259]


See other pages where Neutron activation application is mentioned: [Pg.671]    [Pg.516]    [Pg.357]    [Pg.371]    [Pg.352]    [Pg.353]    [Pg.66]    [Pg.69]    [Pg.138]    [Pg.554]    [Pg.5]    [Pg.279]    [Pg.410]    [Pg.51]    [Pg.406]    [Pg.115]    [Pg.259]    [Pg.84]    [Pg.126]    [Pg.529]    [Pg.225]   


SEARCH



Active applications

Neutron activation

© 2024 chempedia.info