Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutral hydrolysis reaction

In Older to investigate the effect that unneutralized atactic poly(methacrylic acid) (at-PMAA) has on the rate of a neutral hydrolysis reaction, several acyl-activated esters (1) and a series of l-acyl-l,2,4-triazols (2) were chosen as subtrates [47] ... [Pg.6]

Mancini, S.D. Zanin, M. Optimization of Neutral Hydrolysis Reaction of Postconsumer PET for Chemical Recycling. Progress in Rubber, Plastics and Recycling Technology. 2004, 20, 117-132. [Pg.28]

Kallies and Mitzner [2] studied this neutral hydrolysis reaction in gas and solution phases, but using the PCM model [3] to estimate the energies of the different structures present in the mechanisms. These authors analyze the lowering of the activation barrier when one or several water molecules are involved in the reaction mechanism, flnding values that are higher than experiment. Their study was performed at a BLYP/6-31G calculation level using the SCI-PCM model, and showed that the activation barrier can be lowered by some kcal/mol as the number of molecules increases from one to three in the two mechanisms they considered (Scheme23.1). [Pg.396]

Formulation of a pK = pK,(x) functions needs a conversion of variables. As a result of this conversion, the experimental points (Vj, pHj)[j=l,..., N, obtained from pH titrations are transformed into the points (Xj, pK,j)[j=l,...,N, where pKjj = pK (pHj), see Figure 9.4.3. Conversion of V by means of functions x = x(V), defined for the systems listed in Table 9.4.3, requires calculation of rwsi and rws2 values, see the formulae [9.4.45]. For this purpose, in the related formulae one should involve (a) water introduced in the solution of Z as the pH-modifying agent in D and T (b) water involved in hydrate, e.g., NakHn,.kL (oH20 (ro >0) (c) water created/consumed in the neutralization/hydrolysis reactions. [Pg.639]

Lensink, M., Mavri, J., Berendsen, H.J.C. Simulation of a slow reaction with quantum character Neutral hydrolysis of a carboxylic ester. Submitted (1998). [Pg.35]

Mono- and di saccharides are colourless solids or sjrrupy liquids, which are freely soluble in water, practically insoluble in ether and other organic solvents, and neutral in reaction. Polysaccharides possess similar properties, but are generally insoluble in water because of their high molecular weights. Both poly- and di-saccharides are converted into monosaccharides upon hydrolysis. [Pg.453]

To produce the mtile titanium dioxide pigment, hydrolysis of the mother Hquor has to be carried out in the presence of a specially prepared hydrosol as a seeding agent. This hydrosol is made by the neutralization of a portion of the mother Hquor in the presence of hydrochloric or some other monohydric acid. Because of the large amount of the hydrosol that must be added to the mixture (about 6% concentration), the hydrolysis reaction takes only about 1 hr. [Pg.8]

The mechanisms by which Pu(IV) is oxidized in aquatic environments is not entirely clear. At Oak Ridge, laboratory experiments have shown that oxidation occurs when small volumes of unhydrolyzed Pu(IV) species (i.e., Pu(IV) in strong acid solution as a citric acid complex or in 45 percent Na2Coj) are added to large volumes of neutral-to-alkaline solutions(23). In repeated experiments, the ratios of oxidized to reduced species were not reproducible after dilution/hydrolysis, nor did the ratios of the oxidation states come to any equilibrium concentrations after two months of observation. These results indicate that rapid oxidation probably occurs at some step in the hydrolysis of reduced plutonium, but that this oxidation was not experimentally controllable. The subsequent failure of the various experimental solutions to converge to similar high ratios of Pu(V+VI)/Pu(III+IV) demonstrated that the rate of oxidation is extremely slow after Pu(IV) hydrolysis reactions are complete. [Pg.303]

The complexation of Pu(IV) with carbonate ions is investigated by solubility measurements of 238Pu02 in neutral to alkaline solutions containing sodium carbonate and bicarbonate. The total concentration of carbonate ions and pH are varied at the constant ionic strength (I = 1.0), in which the initial pH values are adjusted by altering the ratio of carbonate to bicarbonate ions. The oxidation state of dissolved species in equilibrium solutions are determined by absorption spectrophotometry and differential pulse polarography. The most stable oxidation state of Pu in carbonate solutions is found to be Pu(IV), which is present as hydroxocarbonate or carbonate species. The formation constants of these complexes are calculated on the basis of solubility data which are determined to be a function of two variable parameters the carbonate concentration and pH. The hydrolysis reactions of Pu(IV) in the present experimental system assessed by using the literature data are taken into account for calculation of the carbonate complexation. [Pg.315]

A two-step methanolysis-hydrolysis process37 has been developed which involves reaction of PET with superheated methanol vapors at 240-260°C and atmospheric pressure to produce dimethyl terephthalate, monomethyl terephthalate, ethylene glycol, and oligomeric products in the first step. The methanolysis products are fractionally distilled and the remaining residue (oligomers) is subjected to hydrolysis after being fed into the hydrolysis reactor operating at a temperature of ca. 270°C. The TPA precipitates from the aqueous phase while impurities are left behind in the mother liquor. Methanolysis-hydrolysis leads to decreases in the time required for the depolymerization process compared to neutral hydrolysis for example, a neutral hydrolysis process that requires 45 min to produce the monomers is reduced... [Pg.549]

Although hydrolysis as well as other nucleophilic reactions of A-acylazoles (alcoholysis, aminolysis etc.) most likely follow the addition-elimination (AE) mechanism, there are indications that more complex mechanisms must be taken into account for hydrolysis under specific structural conditions. For example, for neutral hydrolysis of imidazolides with increasing steric shielding of the carbonyl group by one, two, and three... [Pg.17]

Except for the last, these reactions are used in titrimetric neutralization analysis.) Reactions (II) to (IV) can also proceed in the opposite direction. This will be demonstrated on the well-known example of salt hydrolysis. [Pg.64]

Strongly influences rates of hydrolysis. Hydrolysis of aliphatic and alkylic halides optimum at neutral to basic conditions.43 Other hydrolysis reactions tend to be faster at either high or low pH.186... [Pg.807]

The hydrolysis reaction is very slow at ambient temperatures and is accelerated by boiling chromium salt solutions (5). The hydrolysis reaction is characterized by the transformation of the deep blue colored CrtHgOJg to green colored hydrolyzed olates. Another indication is tnatan aged or boiled Cr(III) salt solution has a higher neutralization equivalent than a fresh one due to the hydrolytically produced protons. One way to establish hydrolytic equilibria quickly is to add appropriate equivalents of bases such as NaOH to Cr(III) salt solutions. [Pg.143]

Hydrolysis Reactions. Hydrolysis reactions involve cleavage of a single bond by reaction with water, a hydronium, or a hydroxide ion (78). The bond is typically polarized between an electron-deficient atom (C in carbonyl, P in organophosphates) and an electron-rich atom (0, Cl, Br). The reaction may be neutral, base-, or acid-promoted, depending on the substrate properties and the reaction conditions, such as pH, temperature, and ionic strength (78, 79). [Pg.474]

In addition to the preceding fluoride transport tests, laboratory-scale tests were conducted to investigate the possibility of containing or removing fluoride from the system to allow more economical materials of construction to be used in the design of the full-scale plant (AEA, 20011). A series of nine tests was to be conducted to obtain kinetic data on the use of calcium as an agent for fluoride removal from the GB simulant, fluorophosphoric acid. Data were to be obtained for the hydrolysis reaction under acidic, neutral, and alkaline conditions. [Pg.73]

The individual contributions of the H20, H+, and HO- catalysts to the mechanism of the reaction were further evaluated by means of the kinetics parameters (Table 6.4). At neutral pH, Reactions a and c were both dominated by fcH2<> The second-order rate constants ku+ and kHO- were identical, indicating similar efficiencies of the H+ and HO catalysts. Interestingly, the second-order rate constants for the hydrolysis of Gly-D-Val (6.48) to yield Gly and D-Val (6.49) (Reaction b) could also be calculated (Table 6.4). The similarity to the corresponding rate constants of Reactions a and c suggests that the rate of peptide bond hydrolysis is not particularly sensitive to substitution at or protonation of the flanking amino and carboxy groups [69],... [Pg.290]

Kinetic studies of the reaction of Z-phenyl cyclopropanecarboxylates (1) with X-benzylamines (2) in acetonitrile at 55 °C have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, T, with a hydrogen-bonded four-centre type transition state (3). The results of studies of the aminolysis reactions of ethyl Z-phenyl carbonates (4) with benzylamines (2) in acetonitrile at 25 °C were consistent with a four- (5) and a six-centred transition state (6) for the uncatalysed and catalysed path, respectively. The neutral hydrolysis of p-nitrophenyl trifluoroacetate in acetonitrile solvent has been studied by varying the molarities of water from 1.0 to 5.0 at 25 °C. The reaction was found to be third order in water. The kinetic solvent isotope effect was (A h2o/ D2o) = 2.90 0.12. Proton inventories at each molarity of water studied were consistent with an eight-membered cyclic transition state (7) model. [Pg.36]

Abiotic hydrolysis of pollutants in subsurface waters is pH dependent. The predominant pathways are acid-catalyzed, base-mediated, and neutral (pH-independent) hydrolysis. The acid-catalyzed hydrolysis reaction rate is dependent on proton concentration increases with a decrease in pH. This behavior occurs because the proton is not consumed in the reaction. [Pg.275]

This review, then, reports results of experiments which provide information that can be used to test the hypothesis that hydrolysis reactions proceed at substantially reduced rates when the molecules undergoing hydrolysis are sorbed to sediments. Results are reported for a variety of pesticides and for model compounds that are similar in structural features to pesticides. Included are neutral, base-catalyzed and, to a limited extent, acid-catalyzed hydrolysis reactions. [Pg.222]

For a given pesticide which undergoes hydrolysis, any or all of these hydrolytic pathways may be relevant at various pH s. Organophosphorothioates, for example, have measurable neutral and alkaline hydrolysis rate constants (7). Esters of 2,4-dichlorophenoxyacetic acid (2,4-D), on the other hand, hydrolyze by acid and alkaline catalyzed reactions, but have extremely small neutral hydrolysis rate constants ( ). Thus, any study of the hydrolysis of sorbed pesticides must be prefaced by an understanding of the hydrolytic behavior of individual pesticides in aqueous solution. [Pg.223]


See other pages where Neutral hydrolysis reaction is mentioned: [Pg.579]    [Pg.236]    [Pg.145]    [Pg.153]    [Pg.156]    [Pg.569]    [Pg.579]    [Pg.236]    [Pg.145]    [Pg.153]    [Pg.156]    [Pg.569]    [Pg.140]    [Pg.358]    [Pg.168]    [Pg.549]    [Pg.573]    [Pg.18]    [Pg.18]    [Pg.29]    [Pg.99]    [Pg.117]    [Pg.118]    [Pg.30]    [Pg.131]    [Pg.243]    [Pg.272]    [Pg.574]    [Pg.119]    [Pg.1004]    [Pg.393]    [Pg.165]    [Pg.45]   


SEARCH



Hydrolysis reactions

Neutral hydrolysis

Neutral hydrolysis reaction rate

Neutralization reactions

© 2024 chempedia.info