Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanotubes composites

In the third paper by French and Ukrainian scientists (Khomenko et al.), the authors focus on high performance a-MnCVcarbon nanotube composites as pseudo-capacitor materials. Somewhat surprisingly, this paper teaches to use carbon nanotubes for the role of conductive additives, thus suggesting an alternative to the carbon blacks and graphite materials - low cost, widely accepted conductive diluents, which are typically used in todays supercapacitors. The electrochemical devices used in the report are full symmetric and optimized asymmetric systems, and are discussed here... [Pg.26]

HYBRID SUPERCAPACITORS BASED ON a-Mn02/CARBON NANOTUBES COMPOSITES... [Pg.56]

X. Zhang, J. Zhang, and Z. Liu, Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon 43, 2186—2191 (2005). [Pg.518]

B.A. Bhattacharyya, V.T. Sreekumar, T. Lui, S. Kumar, M.L. Ericson, H.R. Hauge, and E.R. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44, 2373—2377 (2003). [Pg.523]

V.G. Hadjiev, M.N. Lliev, S. Arepalli, P. Nikolaev, and B.S. Files, Raman scattering test of single-wall carbon nanotube composites. App. Phys. Lett. 78, 3193—3195 (2001). [Pg.524]

Y.H. Wu and S.S. Hu, The fabrication of a colloidal gold-carbon nanotubes composite film on a gold electrode and its application for the determination of cytochrome c. Colloid Surface B 41, 299-304 (2005). [Pg.595]

G. Wang, J.J. Xu, and H.Y. Chen, Interfacing cytochrome c to electrodes with a DNA-carbon nanotube composite film. Electrochem. Commun. 4, 506-509 (2002). [Pg.595]

Ajayan PM, Stephen O, Colliex C, Trauth D (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265 1212-1214. [Pg.214]

Breuer O, Sundararaj U (2004). Big returns from small fibers a review of polymer/carbon nanotube composites. Polymer Composites 25 630-645. [Pg.214]

Cochet M, Maser WK, Benitor A, Callejas A, Martinez MT, Benoit JM, Schreiber J, Chauvet O (2001). Synthesis of a new polyaniline/nanotube composite in-situ" polymerisation and charge transfer through site-selective interaction. Chem. Commun. 16 1450-1451. [Pg.215]

Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003). Well-aligned polyaniline/car-bon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41 1551-1557. [Pg.215]

Fournet P, Coleman JN, Lahr B, Drury A, Blau WJ, O Brien DF, Horhold HH (2001). Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90 969-975. [Pg.216]

Goh HW, Goh SH, Xu GQ, Lee KY, Yang GY, Lee YW, Zhang WD (2003). Optical limiting properties of double-C60-end-capped poly(ethylene oxide), double-C -end-capped polyethylene oxide)/poly(ethylene oxide) blend, and double-C -end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. J. Phys. Chem. B 107 6056-6062. [Pg.216]

Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002). Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23 761-765. [Pg.217]

Kilbride BE, Coleman JN, Foumet P, Cadek A, Hutzler S, Roth S, Blau WJ (2002). Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92 4024—4030. [Pg.217]

KymakisE, Amaratunga GAJ (2002a). Polymer-nanotube composites burying nanotubes improves their field emission properties. Appl. Phys. Lett. 80 1435-1437. [Pg.217]

Liu YJ, NishimuraN, Otani Y (2005). Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput. Mater. Sci. 34 173-187. [Pg.218]

Panhuis MIH, Sainz R, Innis PC, Kane-Maguire LAP, Benito AM, Martinez MT, Moulton SE, Wallace GG, Maser WK (2005).Optically active polymer carbon nanotube composite. J. Phys. Chem. B 109 22725-22729. [Pg.219]

Rege K, Raravikar NR, Kim D-Y, Schadler LS, Ajayan PM, Dordick JS (2004). Enzyme-polymer-single walled carbon nanotube composites as biocatalystic films. Nano Lett. 3 829-832. [Pg.219]

Velasco-Santos C, Marty nez-Hema ndez AL, Fisher FT, Ruotf R, Castano V M (2003b). Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15 4470 4475. [Pg.220]

Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7 1123-1128. [Pg.310]

P. Lemoine, J. P. Quinn, Polyethylene multiwalled carbon nanotube composites, Polymer, vol. 46, p. 8222-8232, 2005. [Pg.117]

M. L. Minus, H. G. Chae, S. Kumar, Interfacial crystallization in gel-spun poly(vinyl alchohol) single-wall carbon nanotubes composite fibers, Macromol. Chem. Phys, vol. 210, pp. 1799-1808, 2009. [Pg.118]

R. H. Schmidt, I. A. Kinloch, A. N. Burgess, A. H. Windle, The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films, Langmuir, vol. 23, pp. 5707-5712, 2007. [Pg.118]

N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite, Phys. Rev. B, vol. 58, pp. R7492-R7495,1998. [Pg.118]

V. Scardaci, J. Joimel, J. N. Coleman, Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites, ACS Nano, vol. 3, pp. 714-720, 2009. [Pg.118]

R. A. MacDonald, B.F. Laurenzi G. Viswanathan P. M. Ajayan J. P. Stegemann, Collagen-carbon nanotube composite materials as scaffolds in tissue engineering, Journal of Biomedical Materials Research Part A, vol. 74A, pp. 489-496, 2005. [Pg.120]

A. A. White, S. M. Best, I. A. Kinloch, Hydroxyapatite-carbon nanotube composites for biomedical applications A review, International Journal of Applied Ceramic Technology, vol. 4, pp. 1-13, 2007. [Pg.120]

Zhang, D., et al., Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 2012. 22(29) p. 14696-14704. [Pg.160]

Garcia EJ, Wardle BL, Hart AJ. Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A Applied Science and Manufacturing. 2008 39(6) 1065-70. [Pg.250]

McNally T, Potschke P. Polymer-carbon nanotube composites Preparation, properties and applications. 1st ed. Cambridge Woodhead Publishing Limited 2011. [Pg.250]

WangX, Yong ZZ, Li QW, Bradford PD, Liu W, Tucker DS, et al. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites. Materials Research Letters. 2012 Oct U l(l) 19-25. [Pg.253]

Bhandari, S. Deepa, M. Srivastava, A. K. Joshi, A. G. Kant, R., Poly (3, 4-Ethylene-dioxythiophene)- multiwalled carbon nanotube composite films structure-directed amplified electrochromic response and improved redox activity./. Phys. Chem. B2009,113, 9416-9428. [Pg.471]

Figure 3.13 (a) Values of charge-transfer resistance of different systems based on carbon, using the redox probe Fe(CN)6 . (b) Nyquist plot of different carbon nanotube composites in the presence of the redox couple, (c) Table with the electron-transfer rate constants calculated from cyclic voltammet data by using Nicholson method. Adapted with permission from Ref [103]. Copyright, 2008, Elsevier. [Pg.140]

Electronic motor brushes have been made from nanotube composites that are better lubricated, cooler running, stronger, less brittle, and more accurately moldable in comparison to the traditional carbon black brushes. [Pg.414]


See other pages where Nanotubes composites is mentioned: [Pg.97]    [Pg.508]    [Pg.524]    [Pg.670]    [Pg.450]    [Pg.472]    [Pg.249]    [Pg.96]    [Pg.106]    [Pg.106]   
See also in sourсe #XX -- [ Pg.425 ]




SEARCH



Aligned nanotube composites

Belyakov Hybrid Supercapacitors Based on a-MnO2Carbon Nanotubes Composites

Biomaterial carbon nanotube composites

Biomaterials carbon nanotube composites

Carbon nanotube composite fibers

Carbon nanotube composite films

Carbon nanotube composite films Casting

Carbon nanotube composite films Spinning

Carbon nanotube reinforced copper composite

Carbon nanotube-filled polymer composites

Carbon nanotube-reinforced composites

Carbon nanotube-reinforced composites agglomerates

Carbon nanotube-reinforced composites aggregation

Carbon nanotube-reinforced composites composite materials

Carbon nanotube-reinforced composites dispersion properties

Carbon nanotube-reinforced composites effective dispersions

Carbon nanotube-reinforced composites embedded

Carbon nanotube-reinforced composites mechanical properties

Carbon nanotube-reinforced composites modification with polymers

Carbon nanotube-reinforced composites orientations

Carbon nanotube-reinforced composites polymer membrane

Carbon nanotube-reinforced composites properties

Carbon nanotube-reinforced composites single-walled

Carbon nanotube-reinforced composites structure

Carbon nanotube-reinforced composites surface functionalization

Carbon nanotube/polystyrene composit

Carbon nanotubes (continued composites

Carbon nanotubes -based electrochemical of CNT composites

Carbon nanotubes /polymer composites apphcations

Carbon nanotubes /polymer composites chemical functionalization

Carbon nanotubes /polymer composites electrospinning

Carbon nanotubes /polymer composites electrospinning technique

Carbon nanotubes /polymer composites fibers

Carbon nanotubes /polymer composites preparation

Carbon nanotubes /polymer composites processing

Carbon nanotubes CNT composites

Carbon nanotubes ceramic composite

Carbon nanotubes composite nanofibers

Carbon nanotubes composites

Carbon nanotubes epoxy composites

Carbon nanotubes macroscopic composites

Carbon nanotubes reinforced polymer composite

Composite Materials with Carbon Nanotubes

Composite carbon nanotube —polymer

Composite interfaces, nanotubes

Composite interfaces, nanotubes Interfacial shear strength

Composite nanofibers nanofiber-nanotube composites

Composites Based on Conducting Polymers and Carbon Nanotubes

Failure mechanisms, nanotube composites

Fullerene/carbon nanotube composites

Multi-walled nanotubes polyaniline composites

Multiwalled carbon nanotube composite fibres

Multiwalled carbon nanotubes composites

Nanofiber-Nanotube Composites

Nanofiber-nanotube composite nanofibers

Nanotube Composites with Different Polymers

Nanotube Composites with Other Materials

Poly carbon nanotube composites

Poly silica composite nanotubes

Polyaniline carbon nanotube composites

Polymer Nanotube Composites Promises and Current Challenges

Polymer nanotube composites

Polymer-based Carbon Nanotube Composites Preparation and Applications

Polymers composites, with nanotubes

Silicon/carbon nanotube composites

Single-walled carbon nanotubes polyaniline composites

Single-walled carbon nanotubes polypyrrole composites

Single-walled nanotube -epoxy composites

Supercapacitors carbon nanotube-based composite

Surface area, polymer-carbon nanotube composites

Synthesis of Composites Based on Conducting Polymers and Carbon Nanotubes

Theoretical models, nanotube composites

Thin coatings carbon nanotube composites

Vibrational Properties of Composites Based on Conducting Polymers and Carbon Nanotubes

Viscosity polymer-carbon nanotube composites

© 2024 chempedia.info