Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanoparticle supported nanoparticles

The common underlying principle was shown in Figure 11.2. The electrochemical potential of electrons jl e(=Ep, the Fermi level) in the metal catalyst is fixed at that of the Fermi level of the support.37 This is valid both for electrochemically promoted model catalysts (left) and for seminconducting or ion-conducting-supported metal nanoparticles (right). [Pg.497]

An important question frequently raised in electrochemical promotion studies is the following How thick can a porous metal-electrode deposited on a solid electrolyte be in order to maintain the electrochemical promotion (NEMCA) effect The same type of analysis is applicable regarding the size of nanoparticle catalysts supported on commercial supports such as Zr02, Ti02, YSZ, Ce02 and doped Zr02 or Ti02. What is the maximum allowable size of supported metal catalyst nanoparticles in order for the above NEMCA-type metal-support interaction mechanism to be fully operative ... [Pg.500]

Figure 11.14. Schematic of cylindrical or, more generally, fixed cross-section nanoparticles deposited on an O2 conducting support.23... Figure 11.14. Schematic of cylindrical or, more generally, fixed cross-section nanoparticles deposited on an O2 conducting support.23...
Table 11.2 and assume A=100, which is rather conservative value, to compute J via Eq. (11.32) and O via Eq. (11.22). The results show t p 0.91 which implies that the O2 backspillover mechanism is fully operative under oxidation reaction conditions on nanoparticle metal crystallites supported on ionic or mixed ionic-electronic supports, such as YSZ, Ti02 and Ce02. This is quite reasonable in view of the fact that, as already mentioned an adsorbed O atom can migrate 1 pm per s on Pt at 400°C. So unless the oxidation reaction turnover frequency is higher than 103 s 1, which is practically never the case, the O8 backspillover double layer is present on the supported nanocrystalline catalyst particles. [Pg.509]

The biological impact of starch capped copper nanoparticles on mouse embryonic fibroblast (3T3L1) cells in vitro) was also evaluated by various parameters. More than 85 % of the 3T3Llcells were found to be viable, even after 20 hours time exposure which implies minimum impact on cell viability and morphology. The study demonstrates dose dependent cytotoxic potential of SCuNPs, that is non cytotoxic in the nanogram dose and moderately cytotoxic in the microgram doses (Fig. 10). Comparison of SCuNPs with Cu ions and uncapped copper nanoparticles (UCuNPs) revealed that, ions are more cytotoxic than SCuNPs. This observation supports the theory of slow release of ions from starch coated nanoparticles. [Pg.133]

Interestingly, when the particle size of metal nanoparticles becomes less than 2 nm, terraces become so small that they carmot anymore support the presence of step-edge site metal atom configurations. This can be observed from Figure 1.15, which shows a cubo-octahedron just large enough to support a step-edge site. [Pg.22]

The catalyst deactivates, but after four runs the conversion is still significantly higher (> 99% after 2 h) as compared with the uncatalyzed reaction. Moreover, the Z-selectivity in all four runs is higher than 80%, whereas in the uncatalyzed reaction, it is typically only 30% (Z). The fact that the solid powder can be used several times furthermore supports the fact that the reaction mechanism is heterogeneous. The reason for the deactivation is unknown. A disadvantage of the nanoparticles is the difficulty of separation. Thus, in some cases the particles form col-... [Pg.290]

When the silver nanocrystals are organized in a 2D superlattice, the plasmon peak is shifted toward an energy lower than that obtained in solution (Fig. 6). The covered support is washed with hexane, and the nanoparticles are dispersed again in the solvent. The absorption spectrum of the latter solution is similar to that used to cover the support (free particles in hexane). This clearly indicates that the shift in the absorption spectrum of nanosized silver particles is due to their self-organization on the support. The bandwidth of the plasmon peak (1.3 eV) obtained after deposition is larger than that in solution (0.9 eV). This can be attributed to a change in the dielectric constant of the composite medium. Similar behavior is observed for various nanocrystal sizes (from 3 to 8 nm). [Pg.321]

The application of ly transition metal carbides as effective substitutes for the more expensive noble metals in a variety of reactions has hem demonstrated in several studies [ 1 -2]. Conventional pr aration route via high temperature (>1200K) oxide carburization using methane is, however, poorly understood. This study deals with the synthesis of supported tungsten carbide nanoparticles via the relatively low-tempoatine propane carburization of the precursor metal sulphide, hi order to optimize the carbide catalyst propertira at the molecular level, we have undertaken a detailed examination of hotii solid-state carburization conditions and gas phase kinetics so as to understand the connectivity between plmse kinetic parametera and catalytically-important intrinsic attributes of the nanoparticle catalyst system. [Pg.781]

Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bdnnemann H, Kochubey DI, Savinova ER (2006) Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. J Phys ChemB 110 6881-6890... [Pg.343]

Abstract A review of the thermolytic molecular precursor (TMP) method for the generation of multi-component oxide materials is presented. Various adaptations of the TMP method that allow for the preparation of a wide range of materials are described. Further, the generation of isolated catalytic centers (via grafting techniques) and mesoporous materials (via use of organic templates) is simimarized. The implications for syntheses of new catalysts, catalyst supports, nanoparticles, mesoporous oxides, and other novel materials are discussed. [Pg.70]

The continued development of new single-source molecular precursors should lead to increasingly complex mixed-element oxides with novel properties. Continued work with grafting methods will provide access to novel surface structures that may prove useful for catalytic apphcations. Use of molecular precursors for the generation of metal nanoparticles supported on various oxide supports is another area that shows promise. We expect that the thermolytic molecular precursor methods outlined here will contribute significantly to the development of new generations of advanced materials with tailored properties, and that it will continue to provide access to catalytic materials with improved performance. [Pg.110]

The shape of the nanoparticles depends on numerous parameters such as the nature of the metal and the support, the metal loading. Of the various models of polyhedral metal particles [106], the cubooctaedral structure can be used to represent small metallic particles (Scheme 31). Note that these idealized structures can vary with the nature of chemisorbed species (vide infra) and very subtle atomic rearrangements probably occur during catalytic events. [Pg.185]

Finally, a second area of research for nanoparticles is their immobihza-tion on various supports. The deposition of well-defined nanoparticles on a support by different methods should advantageously replace traditional heterogeneous catalysts in terms of activity and selectivity. [Pg.277]

A specific example where heterogeneous supports provide nanoparticle size-control is the immobilization of homogeneous silver nanoparticles on polystyrene [366]. This work was extended later to the development of a one-pot method for the size-selective precipitation of silver nanoparticles on PVP-protected thiol-functionalized silica. During the immobilization of very small silver nanoclusters both the size of the silver nanoclusters and the thickness of the silver layer on the support could be controlled directly by the reaction parameters applied (Fi re 16) [367]. [Pg.36]

Similarly, Pd, Ag, and Pd-Ag nanoclusters on alumina have been prepared by the polyol method [230]. Dend-rimer encapsulated metal nanoclusters can be obtained by the thermal degradation of the organic dendrimers [368]. If salts of different metals are reduced one after the other in the presence of a support, core-shell type metallic particles are produced. In this case the presence of the support is vital for the success of the preparation. For example, the stepwise reduction of Cu and Pt salts in the presence of a conductive carbon support (Vulcan XC 72) generates copper nanoparticles (6-8 nm) that are coated with smaller particles of Pt (1-2 nm). This system has been found to be a powerful electrocatalyst which exhibits improved CO tolerance combined with high electrocatalytic efficiency. For details see Section 3.7 [53,369]. [Pg.36]

Yang et al. found that Ag-core/Pt-shell nanoparticles with a core/shell could only be formed by the successive reduction method using Ag nanoparticles as the seeds. Results of measurements of UV-Vis, TEM, EDX, and XPS supported the core/shell structure of the bimetallic nanoparticles. The reverse order of preparation using Pt nanoparticles as the seeds did not provide any core/shell nanoparticles while a physical mixture of Ag nanoparticles and the original Pt seeds was obtained [140]. [Pg.56]

The XRD and TEM showed that the bimetallic nanoparticles with Ag-core/Rh-shell structure spontaneously form by the physical mixture of Ag and Rh nanoparticles. Luo et al. [168] carried out structure characterization of carbon-supported Au/Pt catalysts with different bimetallic compositions by XRD and direct current plasma-atomic emission spectroscopy. The bimetallic nanoparticles were alloy. Au-core/Pd-shell structure of bimetallic nanoparticles, prepared by co-reduction of Au(III) and Pd(II) precursors in toluene, were well supported by XRD data [119]. Pt/Cu bimetallic nanoparticles can be prepared by the co-reduction of H2PtClg and CuCl2 with hydrazine in w/o microemulsions of water/CTAB/ isooctane/n-butanol [112]. XRD results showed that there is only one peak in the pattern of bimetallic nanoparticles, corresponding to the (111) plane of the PtCu3 bulk alloy. [Pg.62]

PtRu nanoparticles can be prepared by w/o reverse micro-emulsions of water/Triton X-lOO/propanol-2/cyclo-hexane [105]. The bimetallic nanoparticles were characterized by XPS and other techniques. The XPS analysis revealed the presence of Pt and Ru metal as well as some oxide of ruthenium. Hills et al. [169] studied preparation of Pt/Ru bimetallic nanoparticles via a seeded reductive condensation of one metal precursor onto pre-supported nanoparticles of a second metal. XPS and other analytical data indicated that the preparation method provided fully alloyed bimetallic nanoparticles instead of core/shell structure. AgAu and AuCu bimetallic nanoparticles of various compositions with diameters ca. 3 nm, prepared in chloroform, exhibited characteristic XPS spectra of alloy structures [84]. [Pg.63]

Recently characterization of bimetallic nanoparticles by EXAFS were extensively reported [122-124,176], Structural transformation of bimetallic Pd/Pt nanoparticles, which were prepared by a sequential loading of H2PtClg onto the Pd loaded catalyst, was investigated with EXAFS at high temperatures [176], The results of EXAFS at Pd K and Pt L-III edges showed that Pt was surface-enriched or anchored on the Pd metal core with an increase of the Pt content. The structure of the obtained bimetallic Pd/Pt nanoparticles seemed to be retained upon heating up to 1273 K under ambient condition [176], Pt/ Au bimetallic nanoparticles can be prepared by polyol method and stabilized by PVP [122], XANES and EXAFS studies were also performed on the samples and their results supported the idea of a Pt-core/Au-shell structure with the elements segregated from each other [122],... [Pg.64]


See other pages where Nanoparticle supported nanoparticles is mentioned: [Pg.490]    [Pg.491]    [Pg.491]    [Pg.501]    [Pg.67]    [Pg.136]    [Pg.93]    [Pg.360]    [Pg.420]    [Pg.184]    [Pg.310]    [Pg.316]    [Pg.71]    [Pg.109]    [Pg.185]    [Pg.335]    [Pg.7]    [Pg.13]    [Pg.14]    [Pg.25]    [Pg.30]    [Pg.31]    [Pg.32]    [Pg.33]    [Pg.36]    [Pg.37]    [Pg.50]    [Pg.54]    [Pg.64]    [Pg.68]    [Pg.72]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Aerogel Supported Nanoparticles in Catalysis

Carbon-supported Pt nanoparticles

Carbon-supported platinum-based nanoparticles

Catalyst supports carbon nanoparticle

Catalytic Synthesis of ()-Ethyl 3-(4-methoxyphenyl)acrylate Using Palladium Nanoparticles Supported on Agarose Hydrogel

Catalytic properties supported nanoparticles

Gold Nanoparticle Supports

Hydrogenation with Nanoparticles Using Supported Ionic Liquids

IL-Supported or Mediated Metal Nanoparticles

Imaging Supported Metal Nanoparticles in

Metal nanoparticles synthesis carbon-supported

Metal nanoparticles synthesis silica-supported

Metal-catalyzed hydrogenations supported nanoparticles

Nanoparticle supported

Nanoparticles and 3D Supported Nanomaterials

Nanoparticles carbon catalyst supports

Other Pt Nanoparticles (Unsupported and Supported)

Palladium nanoparticles silica-supported

Some Applications of Supported Nanoparticles Modified by Organometallics

Spectroscopy of Supported Bimetallic Dendrimer Templated Nanoparticles

Support nanoparticles

Support nanoparticles

Supported Bimetallic Dendrimer Templated Nanoparticles

Supported Cold Nanoparticles as Oxidation Catalysts

Supported Dendrimer Templated Nanoparticles

Supported Metal Nanoparticles in Liquid-Phase Oxidation Reactions

Supported metal nanoparticles

Supported metal nanoparticles, sonochemical

Supported nanoparticles

Supported nanoparticles

Supported nanoparticles, from metal

Supported nanoparticles, modified

Supported nanoparticles, modified organometallics

Supported nanoparticles, properties

Supports gold nanoparticles

Templates for Supported Nanoparticle Catalysts

Unique Catalytic Performance of Supported Cold Nanoparticles in Oxidation

© 2024 chempedia.info