Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NADPH pentose phosphate pathway

Most of the enzymes mediating the reactions of the Calvin cycle also participate in either glycolysis (Chapter 19) or the pentose phosphate pathway (Chapter 23). The aim of the Calvin scheme is to account for hexose formation from 3-phosphoglycerate. In the course of this metabolic sequence, the NADPH and ATP produced in the light reactions are consumed, as indicated earlier in Equation (22.3). [Pg.733]

BOTH RIBOSE-5-P AND NADPH ARE NEEDED BY THE CELL In this case, the first four reactions of the pentose phosphate pathway predominate (Figure 23.37). N/VDPH is produced by the oxidative reactions of the pathway, and ribose-5-P is the principal product of carbon metabolism. As stated earlier, the net reaction for these processes is... [Pg.769]

MORE RIBOSE-5-P THAN NADPH IS NEEDED BY THE CELL Synthesis of ribose-5-P can be accomplished without production of N/VDPH if the oxidative steps of the pentose phosphate pathway are bypassed. The key to this route is the extrac-... [Pg.769]

FIGURE 23.37 Wlien biosynthetic demands dictate, the first four reactions of the pentose phosphate pathway predominate and the principal products are ribose-5-P and NADPH. [Pg.770]

MORE NADPH THAN RmOSE-5-P IS NEEDED BY THE CELL Large amounts of N/VDPH can be supplied for biosynthesis without concomitant production of ribose-5-P, if ribose-5-P produced in the pentose phosphate pathway is recycled to produce glycolytic intermediates. As shown in Figure 23.39, this alternative involves a complex interplay between the transketolase and transaldolase reac-... [Pg.770]

NADPH can be produced in the pentose phosphate pathway as well as by malic enzyme (Figure 25.1). Reducing equivalents (electrons) derived from glycolysis in the form of NADH can be transformed into NADPH by the combined action of malate dehydrogenase and malic enzyme ... [Pg.805]

How many of the 14 NADPH needed to form one palmitate (Eq. 25.1) can be made in this way The answer depends on the status of malate. Every citrate entering the cytosol produces one acetyl-CoA and one malate (Figure 25.1). Every malate oxidized by malic enzyme produces one NADPH, at the expense of a decarboxylation to pyruvate. Thus, when malate is oxidized, one NADPH is produced for every acetyl-CoA. Conversion of 8 acetyl-CoA units to one palmitate would then be accompanied by production of 8 NADPH. (The other 6 NADPH required [Eq. 25.1] would be provided by the pentose phosphate pathway.) On the other hand, for every malate returned to the mitochondria, one NADPH fewer is produced. [Pg.805]

TPP-dependent enzymes are involved in oxidative decarboxylation of a-keto acids, making them available for energy metabolism. Transketolase is involved in the formation of NADPH and pentose in the pentose phosphate pathway. This reaction is important for several other synthetic pathways. It is furthermore assumed that the above-mentioned enzymes are involved in the function of neurotransmitters and nerve conduction, though the exact mechanisms remain unclear. [Pg.1288]

The pentose phosphate pathway is an alternative route for the metabolism of glucose. It does not generate ATP but has two major functions (1) The formation of NADPH for synthesis of fatty acids and steroids and (2) the synthesis of ribose for nucleotide and nucleic acid formation. Glucose, fructose, and galactose are the main hexoses absorbed from the gastrointestinal tract, derived principally from dietary starch, sucrose, and lactose, respectively. Fructose and galactose are converted to glucose, mainly in the liver. [Pg.163]

THE PENTOSE PHOSPHATE PATHWAY GENERATES NADPH RIBOSE PHOSPHATE (Figure 20-1)... [Pg.163]

Glucuronate is reduced to L-gulonate in an NADPH-dependent reaction L-gulonate is the direct precursor of ascorbate in those animals capable of synthesizing this vitamin. In humans and other primates as well as guinea pigs, ascorbic acid cannot be synthesized because of the absence of L-g ulonolactone oxidase. L-Gulonate is metabolized ultimately to D-xylulose 5-phosphate, a constituent of the pentose phosphate pathway. [Pg.167]

The pentose phosphate pathway, present in the cytosol, can account for the complete oxidation of glucose, producing NADPH and COj but not ATP. [Pg.172]

The Main Source of NADPH for Lipogenesis Is the Pentose Phosphate Pathway... [Pg.176]

Figure21-4. The provision of acetyl-CoA and NADPH for lipogenesis. (PPP, pentose phosphate pathway T, tricarboxylate transporter K, a-ketoglutarate transporter P, pyruvate transporter.)... Figure21-4. The provision of acetyl-CoA and NADPH for lipogenesis. (PPP, pentose phosphate pathway T, tricarboxylate transporter K, a-ketoglutarate transporter P, pyruvate transporter.)...
The pentose phosphate pathway is operative in the RBC (it metabolizes about 5-10% of the total flux of glucose) and produces NADPH hemolytic anemia due to a deficiency of the activity of glucose-6-phosphate dehydrogenase is common. [Pg.612]

The importance of having adequate supplies of NADPH for the regeneration of these various enzymes cannot be over emphasized. In normal situations this cofactor can be adequately provided by the reductive pentose phosphate pathway. Monitoring the activity of the pentose phosphate pathway has been proposed as a unique way to study the metabolic response to oxidative stress, since the glutathione peroxidase activity is coupled via glutathione reductase to the enzyme glucose-6-phosphate dehydrogenase (Ben Yoseph et ah, 1994). [Pg.276]

The hexose monophosphate pathway has several names just to confuse you. It s called the hexose monophosphate shunt or pathway (HMP shunt or pathway), or the pentose phosphate pathway, or the phospho-gluconate pathway (Fig. 15-1). The pathway in its full form is complicated and has complicated stoichiometry. Usually it s not necessary to remember all of it. The important points are that it makes NADPH for biosynthesis and riboses (C-5 sugars) for DNA and RNA synthesis. [Pg.197]

Thus a constant supply of the reduced coenzyme (NADPH) is required, hence the importance of the pentose phosphate pathway (PPP) as described in Section 5.3.1.6. [Pg.152]

Pentose phosphate pathway (= hexose monophosphate shunt) generation of NADPH G6PDH deficiency... [Pg.153]

The NADPH is produced from glucose 6-phosphate in the first three reactions in the pentose phosphate pathway (see below). Hence the pentose phosphate pathway is essential in the erythrocyte and glycolysis provides the substrate glucose 6-phosphate. Individuals with a reduced amount of glucose 6-phosphate dehydrogenase can suffer from oxidative damage to their cells and hence haemolysis. [Pg.107]

This pathway is variously known as the pentose phosphate, hexose monophosphate or phosphogluconate pathway, cycle or shunt. Although the pentose phosphate pathway achieves oxidation of glucose, this is not its function, as indicated by the distribution of the pathway in different tissues. Only one of the carbons is released as CO2, the key products are NADPH and ribose 5-phosphate, both of which are important for nucleotide phosphate formation and hence for synthesis of nucleic acids (Chapter 20). The... [Pg.110]

The second part consists of a series of reactions in which ribulose 5-phosphate is reconverted back to glucose 6-phosphate (i.e. 5C 6C ) (Figure 6.20) (Appendix 6.8). Some key processes that depend on NADPH, and therefore the pentose phosphate pathway, are identified in Table 6.3 and presented in Figure 6.21. [Pg.112]

Figure 11.4 Condensation, dehydration and reduction reactions in fatty add synthesis. These reactions constitute the major components of the pathway of fatty acid synthesis and are all catalysed by fatty acid synthase. The reduction reactions, indicated by addition of 2H in the diagram, involve the conversion of NADPH to NADP . (The re-conversion of NADP back to NADPH occurs in the pentose phosphate pathway.) The condensation reaction results in an increase in size of acyl-ACP by two carbon units in each step. The two carbons for each extension are each provided by malonyl-CoA. ACP - acyl carrier protein. Figure 11.4 Condensation, dehydration and reduction reactions in fatty add synthesis. These reactions constitute the major components of the pathway of fatty acid synthesis and are all catalysed by fatty acid synthase. The reduction reactions, indicated by addition of 2H in the diagram, involve the conversion of NADPH to NADP . (The re-conversion of NADP back to NADPH occurs in the pentose phosphate pathway.) The condensation reaction results in an increase in size of acyl-ACP by two carbon units in each step. The two carbons for each extension are each provided by malonyl-CoA. ACP - acyl carrier protein.
The reduced coenzyme NADPH is required for the reduction reactions shown in Figure 11.5. It is also required for elongation and desaturation of fatty acids. The major source of NADPH for these reactions is the pentose phosphate pathway, which is described in detail in Chapter 6. [Pg.226]

The deoxyribonucleotides, except for deoxythymidine nucleotide, are formed from the ribonucleotides by the action of an enzyme complex, which comprises two enzymes, ribonucleoside diphosphate reductase and thioredoxin reductase (Figure 20.11). The removal of a hydroxyl group in the ribose part of the molecule is a reduction reaction, which requires NADPH. This is generated in the pentose phosphate pathway. (Note, this pathway is important in proliferating cells not only for generation... [Pg.458]

While NADH exclusively supplies oxidative phosphorylation, NADPH+H" —a very similar coenzyme—is the reducing agent for anabolic pathways. NADPH + is mainly formed in the pentose phosphate pathway (PPP, 1 see p. 152). [Pg.112]


See other pages where NADPH pentose phosphate pathway is mentioned: [Pg.164]    [Pg.164]    [Pg.298]    [Pg.123]    [Pg.166]    [Pg.166]    [Pg.170]    [Pg.176]    [Pg.613]    [Pg.98]    [Pg.128]    [Pg.218]    [Pg.264]    [Pg.275]    [Pg.92]    [Pg.86]    [Pg.153]    [Pg.166]    [Pg.181]    [Pg.199]    [Pg.202]    [Pg.113]    [Pg.145]    [Pg.393]   
See also in sourсe #XX -- [ Pg.166 , Pg.166 , Pg.167 ]




SEARCH



NADPH from pentose phosphate pathway

Pentose phosphate pathway

Pentose phosphate pathway NADPH generation

Pentose phosphate pathway NADPH produced

Two NADPH Molecules Are Generated by the Pentose Phosphate Pathway

© 2024 chempedia.info