Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NADPH-dependent oxidative

The species differences in biotransformation pathways, rates of elimination, and intrinsic hepatic clearance of esfenvalerate and deltamethrin using rat and human liver microsomes were examined [33]. Esfenvalerate was eliminated primarily via NADPH-dependent oxidative metabolism in both rat and human liver microsomes. The CLint of esfenvalerate was estimated to be threefold greater in rodents than in humans on a per kg body weight basis. Deltamethrin was also eliminated primarily via NADPH-dependent oxidative metabolism in rat liver microsomes however, in human liver microsomes, deltamethrin was eliminated almost entirely via... [Pg.123]

Substrate-specific cytochrome P450-mediated hydroxylation involves NADPH-dependent oxidation of some cyclic peptides such as cyclosporine. Hydroxylated products of cyclosporine are biologically inactive and readily cleared from the body. [Pg.109]

Table 19. Fmaj/ mapp values of the NADPH-dependent oxidation of butadiene and epoxybutene, as determined in cell fractions and used for physiological toxicokinetic modelling... Table 19. Fmaj/ mapp values of the NADPH-dependent oxidation of butadiene and epoxybutene, as determined in cell fractions and used for physiological toxicokinetic modelling...
The metabolic pathways leading to the production of these urinary pyridinium metabolites are likely to be mediated by one or more forms of liver cytochrome P450. In vitro metabolic studies with rodent (Igarashi et al., unpublished results) and human (Usuki et al., submitted) microsomal preparations have demonstrated the NADPH-dependent oxidation of both HP and HPTP to HPP. Ongoing studies in the authors laboratory have shown that HPP and related pyridinium metabolites are present in brain tissues obtained from C57 black mice that had been treated with HPTP (Van der Schyf et al. 1994). Additionally, results obtained from intra-cerebral microdialysis, mitochondrial respiration, and rat embryonic mesencephalic cell culture studies suggest that HPP possesses MPP type neurotoxic properties (Rollema et al. 1992, 1994 Bloomquist et al. 1994). [Pg.96]

The significance of superoxide during the hydroxylation of aromatic compounds was shown using the NADH-phenazine methosulphate-02 model system (210). From their observations that rat liver microsomes are in a position to catalyse an NADPH-dependent oxidation of adrenalin to adrenochrom Aust, Roerig and Pederson concluded the participation of Or (210). Another physiological function of erythrocuprein — the... [Pg.55]

Detoxification of organophosphorus pesticides before they can reach their target sites is probably the main reason for poor correlation between carcinogenicity and electrophilicity/mutagenicity. The problem is further complicated by the fact that several different enzymes are involved in the metabolic detoxification of organophosphorus pesticides. For example, paraoxon, tetrachlojTvinphos and dimethoate are preferentially detoxified by A-esterase (paraoxonase), GSH-dependent S-alkyltransferase and carboxyesterase (aliesterase), respectively whereas chlorfenvinphos is mainly detoxified by NADPH-dependent oxidative dealkylation... [Pg.192]

Metab. produced during enzymatic NADPH dependant oxidation of arachidonic acid. [Pg.703]

Analysis of reaction mixtures for 1-propanol and 2-propanol following incubation of NDPA with various rat liver fractions in the presence of an NADPH-generating system is shown in Table I ( ). Presence of microsomes leads to production of both alcohols, but there was no propanol formed with either the soluble enzyme fraction or with microsomes incubated with SKF-525A (an inhibitor of cytochrome P450-dependent oxidations). The combined yield of propanols from 280 ymoles of NDPA was 6.1 ymoles and 28.5 ymoles for the microsomal pellet and the 9000 g supernatant respectively. The difference in the ratio of 1- to 2-propanol in the two rat liver fractions may be due to differences in the chemical composition of the reaction mixtures (2) Subsequent experiments have shown that these ratios are quite reproducible. For comparison, Table I also shows formation of propanols following base catalyzed decomposition of N-propyl-N-nitrosourea. As expected (10,11), both propanol isomers were formed, the total yield in this case being almost quantitative. [Pg.41]

III. Glutathione reductase (EC 1.6.4.2) It is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG) to glutathione (GSH). This enzyme is essential for the GSH redox cycle which maintains adequate levels of reduced cellular GSH. A high GSH/GSSG ratio is essential for protection against oxidative stress. [Pg.141]

Superoxide generation was detected via the NADPH-dependent SOD-inhibitable epinephrine oxidation and spin trapping [15,16], Grover and Piette [17] proposed that superoxide is produced equally by both FAD and FMN of cytochrome P-450 reductase. However, from comparison of the reduction potentials of FAD (-328 mV) and FMN (190 mV) one might expect FAD to be the most efficient superoxide producer. Recently, the importance of the microsomal cytochrome h558 reductase-catalyzed superoxide production has been shown in bovine cardiac myocytes [18]. [Pg.766]

In addition to a well-known NADPH-dependent hydroxylation mechanism (Reaction (2)), cytochrome P-450 is able to catalyze the oxidation of substrates by peroxygenase mechanism (Reaction (8)) where XOOH presents the peroxy compound acting as the oxygen donor. [Pg.770]

Thus, superoxide itself is obviously too inert to be a direct initiator of lipid peroxidation. However, it may be converted into some reactive species in superoxide-dependent oxidative processes. It has been suggested that superoxide can initiate lipid peroxidation by reducing ferric into ferrous iron, which is able to catalyze the formation of free hydroxyl radicals via the Fenton reaction. The possibility of hydroxyl-initiated lipid peroxidation was considered in earlier studies. For example, Lai and Piette [8] identified hydroxyl radicals in NADPH-dependent microsomal lipid peroxidation by EPR spectroscopy using the spin-trapping agents DMPO and phenyl-tcrt-butylnitrone. They proposed that hydroxyl radicals are generated by the Fenton reaction between ferrous ions and hydrogen peroxide formed by the dismutation of superoxide. Later on, the formation of hydroxyl radicals was shown in the oxidation of NADPH catalyzed by microsomal NADPH-cytochrome P-450 reductase [9,10]. [Pg.774]

In 1977, Kellogg and Fridovich [28] showed that superoxide produced by the XO-acetaldehyde system initiated the oxidation of liposomes and hemolysis of erythrocytes. Lipid peroxidation was inhibited by SOD and catalase but not the hydroxyl radical scavenger mannitol. Gutteridge et al. [29] showed that the superoxide-generating system (aldehyde-XO) oxidized lipid micelles and decomposed deoxyribose. Superoxide and iron ions are apparently involved in the NADPH-dependent lipid peroxidation in human placental mitochondria [30], Ohyashiki and Nunomura [31] have found that the ferric ion-dependent lipid peroxidation of phospholipid liposomes was enhanced under acidic conditions (from pH 7.4 to 5.5). This reaction was inhibited by SOD, catalase, and hydroxyl radical scavengers. Ohyashiki and Nunomura suggested that superoxide, hydrogen peroxide, and hydroxyl radicals participate in the initiation of liposome oxidation. It has also been shown [32] that SOD inhibited the chain oxidation of methyl linoleate (but not methyl oleate) in phosphate buffer. [Pg.775]

Although metal-catalyzed protein oxidation is undoubtedly a very effective oxidative process, the origin of free metal ions under in vivo conditions is still uncertain (see Chapter 21). However, protein oxidation can probably be initiated by metal-containing enzymes. Mukhopadhyay and Chatterjee [31] have shown that NADPH-stimulated oxidation of microsomal proteins was mediated by cytochrome P-450 and occurred in the absence of free metal ions. It is important that in contrast to metal ion-stimulated oxidation of proteins, ascorbate inhibited and not enhanced P-450-dependent protein oxidation reacting with the oxygenated P-450 complex. The following mechanism of P-450-dependent oxidation of the side chain protein amino acid residues has been proposed ... [Pg.826]

This mechanism is now considered to be of importance for the protection of LDL against oxidation stress, Chapter 25.) The antioxidant effect of ubiquinones on lipid peroxidation was first shown in 1980 [237]. In 1987 Solaini et al. [238] showed that the depletion of beef heart mitochondria from ubiquinone enhanced the iron adriamycin-initiated lipid peroxidation whereas the reincorporation of ubiquinone in mitochondria depressed lipid peroxidation. It was concluded that ubiquinone is able to protect mitochondria against the prooxidant effect of adriamycin. Inhibition of in vitro and in vivo liposomal, microsomal, and mitochondrial lipid peroxidation has also been shown in studies by Beyer [239] and Frei et al. [240]. Later on, it was suggested that ubihydroquinones inhibit lipid peroxidation only in cooperation with vitamin E [241]. However, simultaneous presence of ubihydroquinone and vitamin E apparently is not always necessary [242], although the synergistic interaction of these antioxidants may take place (see below). It has been shown that the enzymatic reduction of ubiquinones to ubihydroquinones is catalyzed by NADH-dependent plasma membrane reductase and NADPH-dependent cytosolic ubiquinone reductase [243,244]. [Pg.878]

Coenzyme M was shown to function as the central cofactor of aliphatic epoxide carboxylation in Xanthobacter strain Py2, an aerobe from the Bacteria domain (AUen et al. 1999). The organism metabolizes short-chain aliphatic alkenes via oxidation to epoxyalkanes, followed by carboxylation to p-ketoacids. An enzyme in the pathway catalyzes the addition of coenzyme M to epoxypropane to form 2-(2-hydroxypropylthio)ethanesulfonate. This intermediate is oxidized to 2-(2-ketopropylthio)ethanesulfonate, followed by a NADPH-dependent cleavage and carboxylation of the P-ketothioether to form acetoacetate and coenzyme M. This is the only known function for coenzyme M outside the methanoarchaea. [Pg.145]

Unsaturated fatty acids usually contain a cis double bond at position 9 or 12—e.g., linoleic acid (18 2 9,12). As with saturated fatty acids, degradation in this case occurs via p-oxida-tion until the C-9-ds double bond is reached. Since enoyl-CoA hydratase only accepts substrates with trans double bonds, the corresponding enoyl-CoA is converted by an iso-merase from the ds-A, cis- A isomer into the trans-A, cis-A isomer [1]. Degradation by p-oxidation can now continue until a shortened trans-A, ds-A derivative occurs in the next cycle. This cannot be isomerized in the same way as before, and instead is reduced in an NADPH-dependent way to the trans-A compound [2]. After rearrangement by enoyl-CoA isomerase [1 ], degradation can finally be completed via normal p-oxidation. [Pg.166]


See other pages where NADPH-dependent oxidative is mentioned: [Pg.249]    [Pg.262]    [Pg.532]    [Pg.327]    [Pg.351]    [Pg.760]    [Pg.350]    [Pg.365]    [Pg.502]    [Pg.249]    [Pg.262]    [Pg.532]    [Pg.327]    [Pg.351]    [Pg.760]    [Pg.350]    [Pg.365]    [Pg.502]    [Pg.564]    [Pg.203]    [Pg.265]    [Pg.449]    [Pg.155]    [Pg.191]    [Pg.216]    [Pg.349]    [Pg.274]    [Pg.323]    [Pg.325]    [Pg.184]    [Pg.782]    [Pg.863]    [Pg.562]    [Pg.187]    [Pg.52]    [Pg.72]    [Pg.95]    [Pg.581]    [Pg.171]    [Pg.80]    [Pg.66]    [Pg.36]   


SEARCH



NADPH-dependent

NADPH-dependent oxidative metabolism

© 2024 chempedia.info