Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarity movement

If a sample is irradiated with polarized light, only those molecules with absorption axes parallel to the plane of polarization will absorb appreciable energy. The emission from the molecule is also polarized, and its plane of polarization will be fixed in relation to its absorption axis. If the molecule has not moved between the absorption and emission processes, all the emitted radiation will be in one plane of polarization. The spread in the plane of polarization of the emitted light is a function of the lifetime of the excited state and the rate of molecular movement. Polarization data give information on molecular size and shape and may be obtained by a combination of spectrum scanning with modulation of the emission signal by rotation of a polarizing film interposed between the sample and detector (K7). Most manufacturers supply a simple, manually operated attachment for polarization studies. [Pg.330]

An ionophoie may be defined as an oiganic substance that binds a polar compound and acts as an ion-transfer agent to facilitate movement of... [Pg.409]

Electroultrafiltration has been demonstrated on clay suspensions, electrophoretic paints, protein solutions, oil—water emulsions, and a variety of other materials. Flux improvement is proportional to the appHed electric field E up to some field strength E where particle movement away from the membrane is equal to the Hquid flow toward the membrane. There is no gel-polarization layer and (in theory) flux equals the theoretical permeate flux. It... [Pg.299]

At lower frequencies, orientational polarization may occur if the glass contains permanent ionic or molecular dipoles, such as H2O or an Si—OH group, that can rotate or oscillate in the presence of an appHed electric field. Another source of orientational polarization at even lower frequencies is the oscillatory movement of mobile ions such as Na". The higher the amount of alkaH oxide in the glass, the higher the dielectric constant. When the movement of mobile charge carriers is obstmcted by a barrier, the accumulation of carriers at the interface leads to interfacial polarization. Interfacial polarization can occur in phase-separated glasses if the phases have different dielectric constants. [Pg.333]

The observed dielectric constant M and the dielectric loss factor k = k tan S are defined by the charge displacement characteristics of the ceramic ie, the movement of charged species within the material in response to the appHed electric field. Discussion of polarization mechanisms is available (1). [Pg.342]

When dipoles are directly attached to the chain their movement will obviously depend on the ability of chain segments to move. Thus the dipole polarisation effect will be much less below the glass transition temperature, than above it Figure 6.4). For this reason unplasticised PVC, poly(ethylene terephthalate) and the bis-phenol A polycarbonates are better high-frequency insulators at room temperature, which is below the glass temperature of each of these polymers, than would be expected in polymers of similar polarity but with the polar groups in the side chains. [Pg.114]

The simulations to investigate electro-osmosis were carried out using the molecular dynamics method of Murad and Powles [22] described earher. For nonionic polar fluids the solvent molecule was modeled as a rigid homo-nuclear diatomic with charges q and —q on the two active LJ sites. The solute molecules were modeled as spherical LJ particles [26], as were the molecules that constituted the single molecular layer membrane. The effect of uniform external fields with directions either perpendicular to the membrane or along the diagonal direction (i.e. Ex = Ey = E ) was monitored. The simulation system is shown in Fig. 2. The density profiles, mean squared displacement, and movement of the solvent molecules across the membrane were examined, with and without an external held, to establish whether electro-osmosis can take place in polar systems. The results clearly estab-hshed that electro-osmosis can indeed take place in such solutions. [Pg.786]

In addition to the mechanical damage of the protective film, velocity or movement will also bring the cathode reactant more rapidly to the metal surface thus decreasing cathode polarization. [Pg.191]

The existence of an electrical potential causes not only cation and anion movement but also migration of moisture toward the cathode. This movement of water (electroendosmosis) is due to the asymmetrical nature of the polar groups of the water molecule. In arid regions water leaving the anode area may cause the soil surrounding the anodes to become so dry that proper current densities cannot be maintained along the line. To alleviate this, some pipe-line companies have had to transport water into desert areas to re-moisten anode beds. [Pg.386]

As we saw in Section 2.11, chemists indicate the movement of an electron pair during a polar reaction by using a curved, full-headed arrow. A curved arrow shows where electrons move when reactant bonds are broken and product bonds are formed. It means that an election pair moves from the atom... [Pg.144]

A full description of how a reaction occurs is called its mechanism. There are two general kinds of mechanisms by which reactions take place radical mechanisms and polar mechanisms. Polar reactions, the more common type, occur because of an attractive interaction between a nucleophilic (electron-rich) site in one molecule and an electrophilic (electron-poor) site in another molecule. A bond is formed in a polar reaction when the nucleophile donates an electron pair to the electrophile. This movement of electrons is indicated by a curved arrow showing the direction of electron travel from the nucleophile to... [Pg.165]

Historically, ethylene potymerization was carried out at high pressure (1000-3000 atm) and high temperature (100-250 °C) in the presence of a catalyst such as benzoyl peroxide, although other catalysts and reaction conditions are now more often used. The key step is the addition of a radical to the ethylene double bond, a reaction similar in many respects to what takes place in the addition of an electrophile. In writing the mechanism, recall that a curved half-arrow, or "fishhook" A, is used to show the movement of a single electron, as opposed to the full curved arrow used to show the movement of an electron pair in a polar reaction. [Pg.240]

LRP5 and 6 are not required for Wnt/non-(3-catenin signaling instead a protein called Ryk (derailed in Drosophila) is the best characterized coreceptor for the Fz proteins in non-(3-catenin signaling. Ryk/derailed was first implicated in axon guidance, but could conceivably play a more general role in all forms of Wnt/non-P-catenin signaling controlling cell shape, movement, and polarity. [Pg.1320]

Figure 21. Angular movement of the fee end of a bilayer during the flow of a cathodic current using the conducting polymer as cathode. A platinum sheet (left side of the picture) is used as anode. The reference electrode is observed at the bottom, a to e Movement during the reduction process e to a Movement under flow of an anodic current. The movement is stopped at any intermediate point (a, b, c, d, or e) by stopping the current flow, and this position is maintained for a long time without polarization. Figure 21. Angular movement of the fee end of a bilayer during the flow of a cathodic current using the conducting polymer as cathode. A platinum sheet (left side of the picture) is used as anode. The reference electrode is observed at the bottom, a to e Movement during the reduction process e to a Movement under flow of an anodic current. The movement is stopped at any intermediate point (a, b, c, d, or e) by stopping the current flow, and this position is maintained for a long time without polarization.
Just as myosins are able to move along microfilaments, there are motor proteins that move along microtubules. Microtubules, like microfilaments, are polar polymeric assemblies, but unlike actin-myosin interactions, microtubule-based motors exist that move along microtubules in either direction. A constant traffic of vesicles and organelles is visible in cultured cells especially using time-lapse photography. The larger part of this movement takes place on micrombules and is stimulated by phorbol ester (an activator of protein kinase C), and over-expression of N-J aj oncoprotein (Alexandrova et al., 1993). [Pg.99]

Keller, H.U., Cottier, H. (1981). Crawling-like movements and polarization in non-adherent leukocytes. Cell Biol. Int. Rep. 5, 3-7. [Pg.104]


See other pages where Polarity movement is mentioned: [Pg.87]    [Pg.87]    [Pg.8]    [Pg.248]    [Pg.164]    [Pg.309]    [Pg.152]    [Pg.211]    [Pg.99]    [Pg.312]    [Pg.344]    [Pg.361]    [Pg.2008]    [Pg.2054]    [Pg.272]    [Pg.696]    [Pg.114]    [Pg.32]    [Pg.295]    [Pg.340]    [Pg.263]    [Pg.1029]    [Pg.265]    [Pg.263]    [Pg.1292]    [Pg.1319]    [Pg.472]    [Pg.368]    [Pg.271]    [Pg.379]    [Pg.326]    [Pg.96]    [Pg.99]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



© 2024 chempedia.info