Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Morphology nanocomposite

Keywords Clay Elastomer Mechanical properties Morphology Nanocomposite Nanofiller Rubber... [Pg.1]

Elasticity Modulus Eractal Space Morphology Nanocomposite Organoclay... [Pg.220]

Paul, M., Alexandre, M., Degee, P., Henrist, C., Rulmont, A., and Dubois, P. 2002. New nanocomposite materials based on plasticized poly(L -lactide) and organo-modified montmorillonites thermal and morphological study. Polymer 44 443-450. [Pg.39]

Noble metal nanoparticles dispersed in insulating matrices have attracted the interest of many researchers fromboth applied and theoretical points of view [34]. The incorporation of metallic nanoparticles into easily processable polymer matrices offers a pathway for better exploitation of their characteristic optical, electronic and catalytic properties. On the other hand, the host polymers can influence the growth and spatial arrangement of the nanoparticles during the in situ synthesis, which makes them convenient templates for the preparation of nanoparticles of different morphologies. Furthermore, by selecting the polymer with certain favorable properties such as biocompatibiHty [35], conductivity [36] or photoluminescence [37], it is possible to obtain the nanocomposite materials for various technological purposes. [Pg.136]

Literature search shows that epoxy-based nanocomposites have been prepared by many researchers [34-38]. Becker et al. have prepared nanocomposites based on various high-functionahty epoxies. The mechanical, thermal, and morphological properties were also investigated thoroughly [39 3]. The cure characteristics, effects of various compatibilizers, thermodynamic properties, and preparation methods [16,17,44 9] have also been reported. ENR contains a reactive epoxy group. ENR-organoclay nanocomposites were investigated by Teh et al. [50-52]. [Pg.35]

This mbber is very tacky in nature and contains acrylic group, which makes it polar in nature. Nanocomposites have been prepared based on this elastomer with a wide range of nanohllers. Layered silicates [53-55] have been used for this preparation. Sol-gel method [56,57], in situ polymerization [58], and nanocomposites based on different clays like bentonite [59] and mica [60] have been described. The mechanical, rheological, and morphological behaviors have been investigated thoroughly. [Pg.35]

This is a nonpolar rubber with very little unsamration. Nanoclays as well as nanotubes have been used to prepare nanocomposites of ethylene-propylene-diene monomer (EPDM) rubber. The work mostly covers the preparation and characterization of these nanocomposites. Different processing conditions, morphology, and mechanical properties have been smdied [61-64]. Acharya et al. [61] have prepared and characterized the EPDM-based organo-nanoclay composites by X-ray diffracto-gram (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy... [Pg.35]

ENGAGE is an ethylene-octene copolymer. Ray and Bhowmick [70] have prepared nanocomposites based on this copolymer. In this study, the nanoclay was modified in situ by polymerization of acrylate monomer inside the gallery gap of nanoclay. ENGAGE was then intercalated inside the increased gallery gap of the modified nanoclay. The nanocomposites prepared by this method have improved mechanical properties compared to that of the conventional counterparts. Preparation and properties of organically modified nanoclay and its nanocomposites with ethylene-octene copolymer were reported by Maiti et al. [71]. Excellent improvement in mechanical properties and storage modulus was noticed by the workers. The results were explained with the help of morphology, dispersion of the nanofiller, and its interaction with the mbber. [Pg.36]

Nanocomposite based on polyurethane (PU) is prepared using silica, clay, and Polyhedral Oligomeric Silsesquioxane (POSS). Preparation, characterization, mechanical and barrier properties, morphology, and effect of processing conditions have been reported on polyurethane-based nanocomposites [72,73]. [Pg.36]

Maiti and Bhowmick reported exciting results that a polar matrix like fluoroelastomer (Viton B-50) was able to exfoliate unmodified clay (Cloisite NA ) as well as the modified one (Cloisite 20A) [93]. They studied morphology, mechanical, dynamic mechanical and swelling properties of fluoroelastomer nanocomposites. The unmodified-clay-filled systems showed better properties than the modified ones (Table 2.3). [Pg.39]

FIGURE 2.14 Tapping mode phase morphology of the nanocomposites (a) poly[styrene-(ethylene-co-butylene)-styrene] (SFBS)-Cloisite 20A and (b) its 3D image. (From Ganguly, A., Sarkar, M.D., and Bhowmick, A.K., J. Polym. ScL, Part B Polym. Phys., 45, 52, 2006. Courtesy of Wiley InterScience.)... [Pg.44]

Different characteristics of solvents seriously affect the sol-gel reaction in solution. This in turn influences the physico-mechanical properties of the resultant rubber-silica hybrid composites. Bandyopadhyay et al. [34,35] have carried out extensive research on stmcture-property correlation in sol-gel-derived rubber-sihca hybrid nanocomposites in different solvents with both chemically interactive (ENR) and noninteractive (ACM) mbber matrices. Figure 3.12 demonstrates the morphology of representative ACM-sihca and ENR-sihca hybrid composites prepared from various solvents. In all the instances, the concentration of TEOS (45 wt%), TEOS/H2O mole ratio (1 2), pH (1.5), and the gelling temperature (ambient condition) were kept unchanged. [Pg.69]

Tian et al. [56] have studied poly(G-caprolactone)-silica and Sengupta et al. [57] have investigated nylon 66-silica hybrid systems and have observed that the phase separation started when Si/H20 mole ratio is increased above 2 and the resultant hybrid films become opaque. Gao [11] has reported similar observations on sol-gel-derived ionomeric polyethylene-silica system. A wide range of literatures is not available on this topic of mbber-silica hybrid nanocomposites, though Bandyopadhyay et al. [34,35] have reported the hybrid formation with different TEOS/H2O mole ratios from ACM and ENR and also demonstrated detailed structure-property correlation in these systems. The hybrids have been prepared with 1 1, 1 2, 1 4, 1 6, 1 8, and 1 10 TEOS/H2O mole ratios. Figure 3.14 shows the morphology of the ACM-silica hybrid composites prepared from different TEOS/H2O mole ratios. [Pg.71]

Recent demands for polymeric materials request them to be multifunctional and high performance. Therefore, the research and development of composite materials have become more important because single-polymeric materials can never satisfy such requests. Especially, nanocomposite materials where nanoscale fillers are incorporated with polymeric materials draw much more attention, which accelerates the development of evaluation techniques that have nanometer-scale resolution." To date, transmission electron microscopy (TEM) has been widely used for this purpose, while the technique never catches mechanical information of such materials in general. The realization of much-higher-performance materials requires the evaluation technique that enables us to investigate morphological and mechanical properties at the same time. AFM must be an appropriate candidate because it has almost comparable resolution with TEM. Furthermore, mechanical properties can be readily obtained by AFM due to the fact that the sharp probe tip attached to soft cantilever directly touches the surface of materials in question. Therefore, many of polymer researchers have started to use this novel technique." In this section, we introduce the results using the method described in Section 21.3.3 on CB-reinforced NR. [Pg.597]

Researchers [37] also compared the storage modulus of a 40 phr carbon black-filled compound and a 10 phr SWNT-NR nanocomposite. The different properties between carbon black- and SWNTs-filled NR nanocomposites can be explained in terms of two different filler morphology, particularly surface area, aspect ratio, and stmcture. It can be observed from Figure 28.22 that... [Pg.793]

In addition to the processing technique, the properties of the oxides also changed by preparing them in a composite way. Arefian et al. [18] have synthesized SnO/ ZnO nanocomposite using the sonochemical method and studied the effects of temperature and power on the morphologies generated. Recently Mg doped ZnO... [Pg.196]


See other pages where Morphology nanocomposite is mentioned: [Pg.159]    [Pg.34]    [Pg.38]    [Pg.44]    [Pg.45]    [Pg.46]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.62]    [Pg.68]    [Pg.375]    [Pg.780]    [Pg.283]    [Pg.667]    [Pg.671]    [Pg.779]    [Pg.204]    [Pg.93]    [Pg.224]    [Pg.358]    [Pg.367]    [Pg.3]    [Pg.4]    [Pg.5]    [Pg.13]    [Pg.18]    [Pg.29]    [Pg.92]    [Pg.99]    [Pg.102]    [Pg.262]    [Pg.273]    [Pg.309]   
See also in sourсe #XX -- [ Pg.109 , Pg.110 , Pg.111 , Pg.113 ]




SEARCH



© 2024 chempedia.info