Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers vinyl monomer

Because no molecule is spHt out, the molecular weight of the repeating unit is identical to that of the monomer. Vinyl monomers, H2C=CHR (Table 2) undergo addition polymerization to form many important and familiar polymers. Diene (two double bonds) monomers also undergo addition polymerization. Normally, one double bond remains, leaving an unsaturated polymer, with one double bond per repeating unit. These double bonds provide sites for subsequent reaction, eg, vulcanization. [Pg.430]

Acrilan A brand name for a synthetic fibre, based on a copolymer of acrylonitrile with minor proportions of other unspecified vinyl monomers. See also propenenitrile. [Pg.13]

Since the monomers are specified to be vinyl monomers, each contributes two carbon atoms to the polymer backbone, with the associated extended length of 0.252 nm per repeat unit. Therefore the total extended length of the empirical formula unit is... [Pg.11]

The addition polymerization of a vinyl monomer CH2=CHX involves three distinctly different steps. First, the reactive center must be initiated by a suitable reaction to produce a free radical or an anion or cation reaction site. Next, this reactive entity adds consecutive monomer units to propagate the polymer chain. Finally, the active site is capped off, terminating the polymer formation. If one assumes that the polymer produced is truly a high molecular weight substance, the lack of uniformity at the two ends of the chain—arising in one case from the initiation, and in the other from the termination-can be neglected. Accordingly, the overall reaction can be written... [Pg.14]

Positional isomerism is conveniently illustrated by considering the polymerization of a vinyl monomer. In such a reaction, the adding monomer may become attached to the growing chain in either of two orientations ... [Pg.23]

The second type of isomerism we discuss in this section is stereo isomerism. Again we consider the number of ways a singly substituted vinyl monomer can add to a growing polymer chain ... [Pg.25]

The kinds of vinyl monomers which undergo anionic polymerization are those with electron-withdrawing substituents such as the nitrile, carboxyl, and phenyl groups. We represent the catalysts as AB in this discussion these are substances which break into a cation (A ) and an anion (B ) under the conditions of the reaction. In anionic polymerization it is the basic anion which adds across the double bond of the monomer to form the active center for polymerization ... [Pg.404]

In cationic polymerization the active species is the ion which is formed by the addition of a proton from the initiator system to a monomer. For vinyl monomers the type of substituents which promote this type of polymerization are those which are electron supplying, like alkyl, 1,1-dialkyl, aryl, and alkoxy. Isobutylene and a-methyl styrene are examples of monomers which have been polymerized via cationic intermediates. [Pg.411]

Any discussion based on reactivity ratios is kinetic in origin and therefore reflects the mechanism or, more specifically, the transition state of a reaction The transition state for the addition of a vinyl monomer to a growing radical involves the formation of a partial bond between the two species, with a corre sponding reduction of the double-bond character of the vinyl group in the monomer ... [Pg.436]

The presence of stable free radicals in the final polycondensate is supported by the observation that traces of (11) have a strong inhibiting effect on the thermal polymerization of a number of vinyl monomers. Radical polymerization was inhibited to a larger extent by a furfural resin than by typical polymerization inhibitors (34). Thermal degradative methods have been used to study the stmcture of furfural resinifted to an insoluble and infusible state, leading to proposed stmctural features (35). [Pg.77]

Uses. The a2obisnitriles have been used for bulk, solution, emulsion, and suspension polymeri2ation of all of the common vinyl monomers, including ethylene, styrene vinyl chloride, vinyl acetate, acrylonitrile, and methyl methacrylate. The polymeri2ations of unsaturated polyesters and copolymeri2ations of vinyl compounds also have been initiated by these compounds. [Pg.224]

M. Sittig, Vinyl Monomers and Polymers, Noyes Development Corp., Park Ridge, N.J., 1966. [Pg.158]

In general, acryUc ester monomers copolymerize readily with each other or with most other types of vinyl monomers by free-radical processes. The relative ease of copolymerization for 1 1 mixtures of acrylate monomers with other common monomers is presented in Table 7. Values above 25 indicate that good copolymerization is expected. Low values can often be offset by a suitable adjustment in the proportion of comonomers or in the method of their introduction into the polymerization reaction (86). [Pg.166]

Dimethylformamide [68-12-2] (DME) and dimethyl sulfoxide [67-68-5] (DMSO) are the most commonly used commercial organic solvents, although polymerizations ia y-butyrolactoae, ethyleae carboaate, and dimethyl acetamide [127-19-5] (DMAC) are reported ia the hterature. Examples of suitable inorganic salts are aqueous solutioas of ziac chloride and aqueous sodium thiocyanate solutions. The homogeneous solution polymerization of acrylonitrile foUows the conventional kinetic scheme developed for vinyl monomers (12) (see Polymers). [Pg.277]

Organophosphorus Monomers. Many vinyl monomers containing phosphoms have been described in the Hterature (76), but few have gone beyond the laboratory. Bis(2-chloroethyl) vinylphosphonate [115-98-0] C H Cl O P, is a commercially available monomer (Akzo s Fyrol Bis-Beta) made from bis(2-chloroethyl) 2-chloroethylphosphonate. [Pg.479]

Decabromodiphenyl Oxide—Polyacrylate Finishes. An alternative to the diffusion technique is the appHcation of decabromodiphenyl oxide on the surface of fabrics in conjunction with binders (131). Experimental finishes using graft polymerization, in situ polymerization of phosphoms-containing vinyl monomers, or surface halogenation of the fibers also have been reported (129,130,132,133). [Pg.490]

The Kleber-Colombes rigid PVC foam (253,254) is produced by compression mol ding vinyl plastisol to react and gel the compound, followed by steam expansion. The process involves mixing, mol ding, and expansion. The formulation consists of PVC, isocyanate, vinyl monomers such as styrene, anhydrides such as maleic anhydride, polymerization initiators, FC-11, and nucleators. The ingredients are mixed in a Wemer-Pfleiderer or a Baker Perkins... [Pg.420]

Radicals are employed widely in the polymer industry, where their chain-propagating behavior transforms vinyl monomers into polymers and copolymers. The mechanism of addition polymeri2ation involves all three types of reactions discussed above, ie, initiation, propagation by addition to carbon—carbon double bonds, and termination ... [Pg.219]

In these equations I is the initiator and I- is the radical intermediate, M is a vinyl monomer, I—M- is an initial monomer radical, I—M M- is a propagating polymer radical, and and are polymer end groups that result from termination by disproportionation. Common vinyl monomers that can be homo-or copolymeri2ed by radical initiation include ethylene, butadiene, styrene, vinyl chloride, vinyl acetate, acrylic and methacrylic acid esters, acrylonitrile, A/-vinylirnida2ole, A/-vinyl-2-pyrrohdinone, and others (2). [Pg.219]

Other common radical-initiated polymer processes include curing of resins, eg, unsaturated polyester—styrene blends curing of mbber grafting of vinyl monomers onto polymer backbones and telomerizations. [Pg.220]

Wheieas the BPO—DMA ledox system works well for curing of unsaturated polyester blends, it is not a very effective system for initiating vinyl monomer polymerizations, and therefore it generally is not used in such appHcations (34). However, combinations of amines (eg, DMA) and acyl sulfonyl peroxides (eg, ACSP) are very effective initiator systems at 0°C for high conversion suspension polymerizations of vinyl chloride (35). BPO has also been used in combination with ferrous ammonium sulfate to initiate emulsion polymerizations of vinyl monomers via a redox reaction (36). [Pg.224]

Because high temperatures are required to decompose diaLkyl peroxides at useful rates, P-scission of the resulting alkoxy radicals is more rapid and more extensive than for most other peroxide types. When methyl radicals are produced from alkoxy radicals, the diaLkyl peroxide precursors are very good initiators for cross-linking, grafting, and degradation reactions. When higher alkyl radicals such as ethyl radicals are produced, the diaLkyl peroxides are useful in vinyl monomer polymerizations. [Pg.226]

Peioxydicaibonates are efficient polymerization initiators for most vinyl monomer polymerizations, especially for monomers such as acrylates, ethylene, and vinyl chloride. They are particularly good initiators for less reactive monomers such as those containing aHyl groups. They are also effective for curing of unsaturated polyester mol ding resins. [Pg.227]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]


See other pages where Monomers vinyl monomer is mentioned: [Pg.4]    [Pg.721]    [Pg.275]    [Pg.721]    [Pg.275]    [Pg.23]    [Pg.412]    [Pg.11]    [Pg.82]    [Pg.498]    [Pg.576]    [Pg.1055]    [Pg.316]    [Pg.58]    [Pg.197]    [Pg.365]    [Pg.421]    [Pg.545]    [Pg.354]    [Pg.220]    [Pg.221]    [Pg.221]    [Pg.222]    [Pg.225]    [Pg.228]    [Pg.229]    [Pg.229]    [Pg.230]    [Pg.236]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Vinyl monome

Vinyl monomer

Vinylic monomers

© 2024 chempedia.info