Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization rate, monomer

Catalysts Reaction order Transition metal Monomer Polymerization rate coefficient (fep/ ) E (kcal mole" ) Ref. [Pg.209]

Sorting the rate expressions for all species, one arrives at the set of equations given at the bottom of Fig. 7.14. If the discussion is restricted for the moment to molecules not larger than 30 phosphorus atoms, there are a total of 660 rates to be evaluated, and there is still the serious simplification that only forward reactions are permitted. Fitting the complete set of rate equations with only the two rate constants permits the calculation of the results listed at the bottom of Fig. 7.14. The monomer polymerization rate constant, k, is about 200 times larger than fcjj, the rate constant that applies to all subsequent polymerization reactions. [Pg.398]

Initiators of suspension polymerization are organic peroxides or azo compounds that are soluble in the monomer phase but insoluble in the water phase. The amount of initiator influences both the polymerization rate and the molecular weight of the product (95). [Pg.170]

Because high temperatures are required to decompose diaLkyl peroxides at useful rates, P-scission of the resulting alkoxy radicals is more rapid and more extensive than for most other peroxide types. When methyl radicals are produced from alkoxy radicals, the diaLkyl peroxide precursors are very good initiators for cross-linking, grafting, and degradation reactions. When higher alkyl radicals such as ethyl radicals are produced, the diaLkyl peroxides are useful in vinyl monomer polymerizations. [Pg.226]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

The first-order decomposition rates of alkyl peroxycarbamates are strongly influenced by stmcture, eg, electron-donating substituents on nitrogen increase the rate of decomposition, and some substituents increase sensitivity to induced decomposition (20). Alkyl peroxycarbamates have been used to initiate vinyl monomer polymerizations and to cure mbbers (244). They Hberate iodine quantitatively from hydriodic acid solutions. Decomposition products include carbon dioxide, hydrazo and azo compounds, amines, imines, and O-alkyUiydroxylarnines. Many peroxycarbamates are stable at ca 20°C but decompose rapidly and sometimes violently above 80°C (20,44). [Pg.131]

The main industrial use of alkyl peroxyesters is in the initiation of free-radical chain reactions, primarily for vinyl monomer polymerizations. Decomposition of unsymmetrical diperoxyesters, in which the two peroxyester functions decompose at different rates, results in the formation of polymers of enhanced molecular weights, presumably due to chain extension by sequential initiation (204). [Pg.131]

Polymerization Kinetics of Mass and Suspension PVC. The polymerization kinetics of mass and suspension PVC are considered together because a droplet of monomer in suspension polymerization can be considered to be a mass polymerization in a very tiny reactor. During polymerization, the polymer precipitates from the monomer when the chain size reaches 10—20 monomer units. The precipitated polymer remains swollen with monomer, but has a reduced radical termination rate. This leads to a higher concentration of radicals in the polymer gel and an increased polymerization rate at higher polymerization conversion. [Pg.500]

Polymerization in two phases, the Hquid monomer phase and the swollen polymer gel phase, forms the basis for kinetic descriptions of PVC polymerization (79—81). The polymerization rate is slower in the Hquid monomer phase than in the swoUen polymer gel phase on account of the greater mobiHty in Hquid monomer, which allows for greater termination efficiency. The lack of mobiHty in the polymer gel phase reduces termination and creates a higher concentration of radicals, thus creating a higher polymerization rate. Thus the polymerization rate increases with conversion to polymer. [Pg.501]

Solution Polymerization. In solution polymerization, a solvent for the monomer is often used to obtain very uniform copolymers. Polymerization rates ate normally slower than those for suspension or emulsion PVC. Eor example, vinyl chloride, vinyl acetate, and sometimes maleic acid are polymerized in a solvent where the resulting polymer is insoluble in the solvent. This makes a uniform copolymer, free of suspending agents, that is used in solution coatings (99). [Pg.502]

Determine the worst-case gas mixture combustion charac teris-tics, system pressure, and permissible pressure drop across the arrester, to help select the most appropriate element design. Not only does element design impac t pressure drop, but the rate of blockage due to particle impact, liquid condensation, and chemical reaction (such as monomer polymerization) can make some designs impractical even if in-service and out-of-seivdce arresters are provided in parallel. [Pg.2300]

To maintain a high polymerization rate at high conversions, reduce the residual amount of the monomer, and eliminate the adverse process of polyacrylamide structurization, polymerization is carried out in the adiabatic mode. An increase in temperature in the reaction mixture due to the heat evolved in the process of polymerization is conductive to a reduction of the system viscosity even though the polymer concentration in it rises. In this case, the increase in flexibility and mobility of macromolecules shifts the start of the oncoming gel effect into the range of deep transformation or eliminates it completely. [Pg.66]

It will be known that for the radical polymerization the increase on the rate of initiation would increase the polymerization rate Eq. (I) and decrease the degree of polymerization Eq. (2). In the present systems, the monomer concentration was relatively high so that initiating radicals are formed to some extent from the monomer and solvent, i.e., / , in Eq. (1) may be represented as follows [51] ... [Pg.124]

Figure 1 The typical tendencies for the variation of monomer conversion by the polymerization time and for the variation of polymerization rate by the monomer conversion in the ideal emulsion polymerization process. Figure 1 The typical tendencies for the variation of monomer conversion by the polymerization time and for the variation of polymerization rate by the monomer conversion in the ideal emulsion polymerization process.
The kinetic mechanism of emulsion polymerization was developed by Smith and Ewart [10]. The quantitative treatment of this mechanism was made by using Har-kin s Micellar Theory [18,19]. By means of quantitative treatment, the researchers obtained an expression in which the particle number was expressed as a function of emulsifier concentration, initiation, and polymerization rates. This expression was derived for the systems including the monomers with low water solubility and partly solubilized within the micelles formed by emulsifiers having low critical micelle concentration (CMC) values [10]. [Pg.192]

The monomer concentration within the forming latex particles does not change for a long period due to the diffusion of monomer from the droplets to the polymerization loci. Therefore, the rate of the propagation reaction does not change and a constant polymerization rate period is observed in a typical emulsion polymerization system. [Pg.192]

In some cases, due to the highly polar character of the sulfate radicals, peroxydisulfate initiators can provide slow polymerization rates with some apolar monomers since the polar sulfate radicals cannot easily penetrate into the swollen micelle structures containing apolar monomers. The use of mercaptans together with the peroxydisulfate type initiators is another method to obtain higher polymerization rates [43]. The mercaptyl radicals are more apolar relative to the free sulfate radicals and can easily interact with the apolar monomers to provide higher polymerization rates. [Pg.195]

Based on the Smith-Ewart theory, the number of latex particles formed and the rate of polymerization in Interval II is proportional with the 0,6 power of the emulsifier concentration. This relation was also observed experimentally for the emulsion polymerization of styrene by Bartholomeet al. [51], Dunn and Al-Shahib [52] demonstrated that when the concentrations of the different emulsifiers were selected so that the micellar concentrations were equal, the same number of particles having the same size could be obtained by the same polymerization rates in Interval II in the existence of different emulsifiers [52], The number of micelles formed initially in the polymerization medium increases with the increasing emulsifier concentration. This leads to an increase in the total amount of monomer solubilized by micelles. However, the number of emulsifier molecules in one micelle is constant for a certain type of emulsifier and does not change with the emulsifier concentration. The monomer is distributed into more micelles and thus, the... [Pg.197]

All these effects increase the overall polymerization rate and decrease the degree of polymerization. The effect of polymerization temperature on the variation of monomer conversion with the polymerization time is exemplified in Fig. 8 for the emulsion polymerization of styrene. [Pg.199]

We have also examined the effect of stabilizer (i.e., polyacrylic acid) on the dispersion polymerization of styrene (20 ml) initiated with AIBN (0.14 g) in an isopropanol (180 ml)-water (20 ml) medium [93]. The polymerizations were carried out at 75 C for 24 h, with 150 rpm stirring rate by changing the stabilizer concentration between 0.5-2.0 g/dL (dispersion medium). The electron micrographs of the final particles and the variation of the monomer conversion with the polymerization time at different stabilizer concentrations are given in Fig. 12. The average particle size decreased and the polymerization rate increased by the increasing PAAc concentra-... [Pg.205]


See other pages where Polymerization rate, monomer is mentioned: [Pg.49]    [Pg.1680]    [Pg.49]    [Pg.1680]    [Pg.396]    [Pg.280]    [Pg.397]    [Pg.244]    [Pg.413]    [Pg.461]    [Pg.513]    [Pg.459]    [Pg.465]    [Pg.524]    [Pg.480]    [Pg.538]    [Pg.1063]    [Pg.67]    [Pg.68]    [Pg.191]    [Pg.191]    [Pg.193]    [Pg.195]    [Pg.197]    [Pg.198]    [Pg.200]    [Pg.200]    [Pg.203]    [Pg.204]    [Pg.209]    [Pg.210]   


SEARCH



Monomers, polymerization

Monomers, polymerization rates various

Polymerization rate

© 2024 chempedia.info