Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer continued residual

Place 25 g. of methyl methacrylate polymer (G.B. Diakon (powder). Perspex (sheet) U.S.A. Lucite, Plexiglass) in a 100 ml. Claisen flask, attach an efficient condenser e.g., of the double smface type) and distil with a small luminous flame move the flame to and fro around the sides of the flask. At about 300° the polymer softens and undergoes rapid depolymerisation to the monomer, methyl methacrylate, which distils over into the receiver. Continue the distillation until only a small black residue (3-4 g.) remains. Redistil the hquid it passes over at 100-110°, mainly at 100-102°. The yield of methyl methacrylate (monomer) is 20 g. If the monomer is to be kept for any period, add 0 -1 g. of hydro quinone to act as a stabiUser or inhibitor of polymerisation. [Pg.1023]

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

A twin-screw extmder is used to reduce residual monomers from ca 50 to 0.6%, at 170°C and 3 kPa with a residence time of 2 min (94). In another design, a heated casing encloses the vented devolatilization chamber, which encloses a rotating shaft with specially designed blades (99,100). These continuously regenerate a large surface area to faciUtate the efficient vaporization of monomers. The devolatilization equipment used for the production of polystyrene and ABS is generally suitable for SAN production. [Pg.195]

Depending on the final polymerization conditions, an equilibrium concentration of monomers (ca 8%) and short-chain oligomers (ca 2%) remains (72). Prior to fiber spinning, most of the residual monomer is removed. In the conventional process, the molten polymer is extmded as a strand, solidified, cut into chip, washed to remove residual monomer, and dried. In some newer continuous processes, the excess monomer is removed from the molten polymer by vacuum stripping. [Pg.251]

One of the key benefits of anionic PS is that it contains much lower levels of residual styrene monomer than free-radical PS (167). This is because free-radical polymerization processes only operate at 60—80% styrene conversion, whereas anionic processes operate at >99% styrene conversion. Removal of unreacted styrene monomer from free-radical PS is accompHshed using continuous devolatilization at high temperature (220—260°C) and vacuum. This process leaves about 200—800 ppm of styrene monomer in the product. Taking the styrene to a lower level requires special devolatilization procedures such as steam stripping (168). [Pg.517]

The Ticona materials are prepared by continuous polymerisation in solution using metallocene catalysts and a co-catalyst. The ethylene is dissolved in a solvent which may be the comonomer 2-norbomene itself or another hydrocarbon solvent. The comonomer ratio in the reactor is kept constant by continuous feeding of both monomers. After polymerisation the catalyst is deactivated and separated to give polymers of a low residual ash content and the filtration is followed by several degassing steps with monomers and solvents being recycled. [Pg.280]

Upon complexation, shifts in the UV-visible spectra of cupric chloride are manifested as a shoulder at approximately 370 nm, and a shift in the visible absorption from 865 to 850 nm. The method of continuous variation7 (Job s Method) was employed using the new, 370 nm, absorption. The results indicate one monomer residue (pyridine... [Pg.431]

In contrast to the results from previous studies with related monomers, at low temperatures, from —78 to —40°C, no polymerization reaction apparently occurred. However, if the polymerization reactions initiated with either BF3 0Et2 or SnCl were carried out at 0°C and the system was allowed to attain ambient temperature (20°C) over a period of 24 h, or if initiation was done directly at ambient temperature and stirring was continued for 24 h, good yields of low molecular weight polymers, which were insoluble in methanol, were obtained. The latter procedure was found to be the most effective, but at 0°C only viscous residues resulted. However, for shorter polymerization periods, even at 20°C, no products insoluble in methanol were obtained, and the monomer was recovered virtually unreacted. [Pg.452]

A typical commercial reactor consists of a vertical tube, up to 10 m in height, into the top of which the monomer is fed continuously. As polymerization proceeds, the increasingly viscous polymer solution travels down the column. Molten polymer is drawn from the bottom of the reaction tube and is subsequently cooled and chopped into pellets. The final manufacturing stage consists of exposing the pellets to a strong vacuum at a slightly elevated temperature to remove residual monomer and water. [Pg.362]

The peroxide 179 dissociates in the presence of a monomer giving rise to alkoxyl (CO-) and borinate (BO-) radicals, but the latter are believed to be too stable to initiate polymerization. It should be mentioned that the molecular weight continuously increases throughout the process implying the pseudo-living mechanism for chain growth. After the completion of the process borane residue is completely oxidized into diol <2004MM6260>. Thus, the 8-boraindane molecule not only initiates the polymerization, but also is a precursor to two functionalities in the polymer chain. [Pg.628]

Union Carbide (34) and in particular Dow adopted the continuous mass polymerization process. Credit goes to Dow (35) for improving the old BASF process in such a way that good quality impact-resistant polystyrenes became accessible. The result was that impact-resistant polystyrene outstripped unmodified crystal polystyrene. Today, some 60% of polystyrene is of the impact-resistant type. The technical improvement involved numerous details it was necessary to learn how to handle highly viscous polymer melts, how to construct reactors for optimum removal of the reaction heat, how to remove residual monomer and solvents, and how to convey and meter melts and mix them with auxiliaries (antioxidants, antistatics, mold-release agents and colorants). All this was necessary to obtain not only an efficiently operating process but also uniform quality products differentiated to meet the requirements of various fields of application. In the meantime this process has attained technical maturity over the years it has been modified a number of times (Shell in 1966 (36), BASF in 1968 (37), Granada Plastics in 1970 (38) and Monsanto in 1975 (39)) but the basic concept has been retained. [Pg.271]

The continuous mass process is divided into 4 steps rubber solution in styrene monomer, polymerization, devolatilization and compounding. In 1970 N. Platzer (40) drew up a survey of the state of the art. Polymerization is divided into prepolymerization and main polymerization for both steps reactor designs other than the tower reactors shown in Figure 2 have been proposed. Main polymerization is taken to a conversion of 75 to 85% residual monomer and any solvent are separated under vacuum. The copolymer then passes to granulating equipment, frequently through one or more intermediate extruders in which colorant and other auxiliaries are added. [Pg.271]

At present all commercial polystyrene (with average molecular weights between 100,000 and 400,000) is manufactured by radical polymerization, which yields atactic polymers.476 Peroxides and azo compounds are commonly used initiators. The suspension process (usually as a batch process in water at 80-140°C) produces a product with relatively high residual monomer content.223 More important is the continuous solution process (usually in ethylbenzene solvent at 90-180°C), which yields high-purity product. Styrene can be copolymerized with numerous other monomers.477 One of these copolymers, the styrene-divinylbenzene copolymer produced by free-radical polymerization, has a crosslinked stucture and is used in... [Pg.774]


See other pages where Monomer continued residual is mentioned: [Pg.93]    [Pg.217]    [Pg.20]    [Pg.27]    [Pg.319]    [Pg.482]    [Pg.483]    [Pg.65]    [Pg.194]    [Pg.399]    [Pg.413]    [Pg.414]    [Pg.496]    [Pg.238]    [Pg.78]    [Pg.217]    [Pg.307]    [Pg.309]    [Pg.173]    [Pg.137]    [Pg.260]    [Pg.333]    [Pg.334]    [Pg.286]    [Pg.28]    [Pg.572]    [Pg.63]    [Pg.5]    [Pg.410]    [Pg.96]    [Pg.646]    [Pg.317]    [Pg.241]    [Pg.562]    [Pg.1592]   
See also in sourсe #XX -- [ Pg.259 , Pg.265 ]




SEARCH



Monomer (continued

RESIDUAL MONOMER

© 2024 chempedia.info