Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum 2, synthesis

The metallophthalocyanines which have found application as elecfiochromes are mainly the rare earth derivatives, especially lutetium, and second row fiansition metals such as zirconium and molybdenum. Synthesis of these molecules follows the fiaditional routes, e.g. condensation of 1,2-dicyanobenzene with a metal acetate in a high boiling solvent (see Chapter 2). These compounds have structures in which the rare earth element is sandwiched between two phthalocyanine rings, e.g. zirconium bisphthalocyanine (1.92 M = Zr) and lutetium bisphthalocyanine (192 M = Lu), the latter protonated on one of the meso N atoms to balance the charge. [Pg.57]

Edwards PG, Fleming JS, Liyanage SS et al (1996) Primary alkenyl phosphine complexes of chromium and molybdenum synthesis and characterisation of tricaibonyl(l,5,9-triphosphacyclododecane)chromium(O). J Chem Soc Dalton Trans 1801-1807... [Pg.435]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

The standard synthesis method features side-chain chlorination of a methylpyridine (picoline), followed by exchange-fluoriaation with hydrogen fluoride or antimony fluorides (432,433). The fluoriaation of pyridinecarboxyHc acids by sulfur tetrafluoride (434) or molybdenum hexafluoride (435) is of limited value for high volume production operations due to high cost of fluorinating agent. [Pg.338]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

In this process, catalysts, such as boric acid, molybdenum oxide, zirconium, and titanium tetrachloride or ammonium molybdate, are used to accelerate the reaction. The synthesis is either carried out in a solvent (aUphatic hydrocarbon, trichlorobenzene, quinoline, pyridine, glycols, or alcohols) at approximately 200°C or without a solvent at 300°C (51,52). [Pg.505]

Synthesis. The total aimual production of PO in the United States in 1993 was 1.77 biUion kg (57) and is expected to climb to 1.95 biUion kg with the addition of the Texaco plant (Table 1). There are two principal processes for producing PO, the chlorohydrin process favored by The Dow Chemical Company and indirect oxidation used by Arco and soon Texaco. Molybdenum catalysts are used commercially in indirect oxidation (58—61). Capacity data for PO production are shown in Table 1 (see Propylene oxide). [Pg.348]

Syntheses from Dry Metals and Salts. Only metaUic nickel and iron react direcdy with CO at moderate pressure and temperatures to form metal carbonyls. A report has claimed the synthesis of Co2(CO)g in 99% yield from cobalt metal and CO at high temperatures and pressures (91,92). The CO has to be absolutely free of oxygen and carbon dioxide or the yield is drastically reduced. Two patents report the formation of carbonyls from molybdenum and tungsten metal (93,94). Ruthenium and osmium do not react with CO even under drastic conditions (95,96). [Pg.67]

Ammonia production from natural gas includes the following processes desulfurization of the feedstock primary and secondary reforming carbon monoxide shift conversion and removal of carbon dioxide, which can be used for urea manufacture methanation and ammonia synthesis. Catalysts used in the process may include cobalt, molybdenum, nickel, iron oxide/chromium oxide, copper oxide/zinc oxide, and iron. [Pg.64]

K. S. Suslick, M. Fang, T. Hyeon, and A. A. Cichowlas, Sonochemical synthesis and catalytic properties of nanostructured molybdenum carbide, in Molecularily Designed Nanostructered Materials, K. E. Gonsalves., ed., M.R.S., Pittsburgh (1994). [Pg.174]

Although a number of reagents can be used to reduce an isoxazole ring, molybdenum hexacarbonyl31 was selected for use in this synthesis. The action of this reagent on 24 reduces the weak N-0 bond of the isoxazole ring and produces a //-amino-a,//-unsaturated aldehyde (i.e. a vinylogous formamide) (see Scheme 19). Intermediate 87 forms smoothly upon deprotection of the terminal acetylene carbon with basic methanol-THF. [Pg.553]

Molybdenum and tungsten are unique in that they are resistant to sulfur, and, in fact, are commonly sulfided before use. The Bureau of Mines tested a variety of molybdenum catalysts (32). They are moderately active but relatively high temperatures are required in order to achieve good conversion, even at low space velocities. Selectivity to methane was 79-94%. Activity is considerably less than that of nickel. Although they are active with sulfur-bearing synthesis gas, the molybdenum and tungsten catalysts are not sufficiently advanced to be considered candidates for commercial use. [Pg.25]

Very recently, synthesis and structure of molybdenum and tungsten complexes of the relatively unhindered disilene Si2Me4 were reported. The x-ray structure of 84 shows a metallacyclosilane structure with W — Si = 2.606(2) A and Si —Si = 2.260(3) A. The W — Si bond length is within the range of various estimates of the Si and W covalent radii and the Si —Si distance falls midway between the expected values for a single (2.35 A) and a double bond (2.14 A) (Fig. 13). [Pg.40]

Molybdenum, tris(phenylenedithio)-structure, 1,63 Molybdenum alkoxides physical properties, 2,346 synthesis, 2,339 Molybdenum blue liquid-liquid extraction, 1,548 Molybdenum cofactor, 6,657 Molybdenum complexes acrylonitrile, 2,263 alkoxides, 3,1307 alkoxy carbonyl reactions, 2,355 alkyl, 3,1307 alkyl alkoxy reactions, 2,358 alkyl peroxides oxidation catalyses, 6,342 allyl, 3,1306... [Pg.166]

Abstract For many years after its discovery, olefin metathesis was hardly used as a synthetic tool. This situation changed when well-defined and stable carbene complexes of molybdenum and ruthenium were discovered as efficient precatalysts in the early 1990s. In particular, the high activity and selectivity in ring-closure reactions stimulated further research in this area and led to numerous applications in organic synthesis. Today, olefin metathesis is one of the... [Pg.223]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

The difference in reactivity is perfectly revealed in Metz s total synthesis of the molluscicidal furanosesquiterpene lactones ricciocarpin A (50) and B (51) (Scheme 9) [32]. Attempts to convert acrylate 43 to lactone 44 using Grubbs5 catalyst A or Schrock s molybdenum catalyst B resulted in very low yields of the... [Pg.281]

With the same synthetic sequence, labeled ribose molecules produced AIRs labeled on the ribose moiety. From D-erythrose and (l3C)NaCN, the Fischer-Kiliani synthesis, as modernized by Serianni et al.59 produced D-(l-l3C)ribose and D-(l-l3C)arabinose. The labeled arabinose was transformed into D-(2-l3C)ri-bose in the presence of dioxobis(2,4-pentanedionato)-0-0 -molybdenum(VI) in... [Pg.295]


See other pages where Molybdenum 2, synthesis is mentioned: [Pg.84]    [Pg.84]    [Pg.262]    [Pg.324]    [Pg.165]    [Pg.428]    [Pg.469]    [Pg.474]    [Pg.477]    [Pg.57]    [Pg.84]    [Pg.92]    [Pg.346]    [Pg.53]    [Pg.173]    [Pg.703]    [Pg.2097]    [Pg.1018]    [Pg.167]    [Pg.168]    [Pg.227]    [Pg.13]    [Pg.226]    [Pg.228]    [Pg.240]    [Pg.253]    [Pg.259]    [Pg.261]    [Pg.294]    [Pg.316]    [Pg.354]   
See also in sourсe #XX -- [ Pg.154 ]

See also in sourсe #XX -- [ Pg.371 ]




SEARCH



Electrochemical Synthesis of Double Molybdenum Carbides

Iron-molybdenum cofactor, FeMoco synthesis

Iron-molybdenum-sulfur clusters synthesis

Molybdenum , halocarbonyl complexes synthesis

Molybdenum alkoxide synthesis

Molybdenum alkoxides synthesis

Molybdenum carbonyl synthesis

Molybdenum cluster compounds synthesis

Molybdenum cofactor synthesis

Molybdenum complexes synthesis

Molybdenum enolates synthesis and reaction

Molybdenum solid-state synthesis

Molybdenum synthesis activity

Nickel-, Cobalt-, and Molybdenum-Catalyzed Indole Ring Syntheses

Sonochemical synthesis molybdenum carbide

Syntheses of Hexanuclear Molybdenum and Tungsten Clusters

Synthesis of Molybdenum Disulphide

The Synthesis of Molybdenum and Tungsten Dinitrogen Complexes

© 2024 chempedia.info