Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum nitrates

Escherichia coli [NiFe] hydrogenase 3 Membrane-associated component of the formate hydrogen lyase complex H2 production during fermentation H2 uptake under anaerobic conditions Anaerobiosis, carbon source limitation, phosphate limitation, molybdenum, nitrate, formate 7.8... [Pg.52]

Antimony, arsenic, barium, boron, chromium, fluoride, manganese, mercury, molybdenum, nitrate, sodium, sulfate... [Pg.112]

However, the PIM s stability was accompanied by relatively poor separative performance. The transport of U across the membrane by TOPO proceeds by a similar scheme to that by TBP TOPO forms a neutral complex with uranyl nitrate which is extracted into the membrane. In this case, U was transported from a solution containing only uranyl nitrate and molybdenum nitrate into water. This means that the reaction had no driving force other than the difference in concentration of the respective metal on each side of the membrane. Under these circumstances, uphill transport (Fig. 10.2) and separation is impossible, and this system reflects that limitation. Less than 50% of the U in the source phase was transferred to the receiving phase. Additionally, the system was not able to completely separate U from Mo, leaving an appreciable quantity of Mo and U in both source and receiving phases. Nonetheless, this research clearly demonstrated the superiority of PIMs over SLMs in this application. [Pg.246]

Molybdenum. Molybdenum is a component of the metaHoen2ymes xanthine oxidase, aldehyde oxidase, and sulfite oxidase in mammals (130). Two other molybdenum metaHoen2ymes present in nitrifying bacteria have been characteri2ed nitrogenase and nitrate reductase (131). The molybdenum in the oxidases, is involved in redox reactions. The heme iron in sulfite oxidase also is involved in electron transfer (132). [Pg.387]

Soil Nutrient. Molybdenum has been widely used to increase crop productivity in many soils woddwide (see Fertilizers). It is the heaviest element needed for plant productivity and stimulates both nitrogen fixation and nitrate reduction (51,52). The effects are particularly significant in leguminous crops, where symbiotic bacteria responsible for nitrogen fixation provide the principal nitrogen input to the plant. Molybdenum deficiency is usually more prominent in acidic soils, where Mo(VI) is less soluble and more easily reduced to insoluble, and hence unavailable, forms. Above pH 7, the soluble anionic, and hence available, molybdate ion is the principal species. [Pg.478]

The element molybdenum (atomic weight 95.95) constitutes 0.08% of the weight of nitrate reductase. If the molecular weight of nitrate reductase is 240,000, what is its likely quaternary structure ... [Pg.151]

Fertilisers For nitrates, non-molybdenum austenitic steels are satisfactory, but in the manufacture of ammonium sulphate some free acid is often present, so that evaporators and centrifugal dryer baskets in this case are generally made from molybdenum-bearing steels. For super-phosphates this has limited application. [Pg.559]

Discussion. Molybdates [Mo(VI)] are quantitatively reduced in 2M hydrochloric acid solution at 60-80 °C by the silver reductor to Mo(V). The reduced molybdenum solution is sufficiently stable over short periods of time in air to be titrated with standard cerium(IV) sulphate solution using ferroin or /V-phenylanthranilic acid as indicator. Nitric acid must be completely absent the presence of a little phosphoric(V) acid during the reduction of the molybdenum(VI) is not harmful and, indeed, appears to increase the rapidity of the subsequent oxidation with cerium(IV) sulphate. Elements such as iron, copper, and vanadium interfere nitrate interferes, since its reduction is catalysed by the presence of molybdates. [Pg.383]

The solution should be free from the following, which either interfere or lead to an unsatisfactory deposit silver, mercury, bismuth, selenium, tellurium, arsenic, antimony, tin, molybdenum, gold and the platinum metals, thiocyanate, chloride, oxidising agents such as oxides of nitrogen, or excessive amounts of iron(III), nitrate or nitric acid. Chloride ion is avoided because Cu( I) is stabilised as a chloro-complex and remains in solution to be re-oxidised at the anode unless hydrazinium chloride is added as depolariser. [Pg.515]

Large amounts of chloride, cobalt(II), and chromium(III) do not interfere iron(III), nickel, molybdenum)VI), tungsten(VI), and uranium(VI) are innocuous nitrate, sulphate, and perchlorate ions are harmless. Large quantities of magnesium, cadmium, and aluminium yield precipitates which may co-precipitate manganese and should therefore be absent. Vanadium causes difficulties only... [Pg.584]

Sulfate reducers can use a wide range of terminal electron acceptors, and sulfate can be replaced by nitrate as a respiratory substrate. Molybdenum-containing enzymes have been discovered in SRB (also see later discussion) and, in particular, D. desulfuricans, grown in the presence of nitrate, generates a complex enzymatic system containing the following molybdenum enzymes (a) aldehyde oxidoreduc-tase (AOR), which reduces adehydes to carboxylic acids (b) formate dehydrogenase (FDH), which oxidizes formate to CO2 and (c) nitrate reductase (the first isolated from a SRB), which completes the enzy-... [Pg.396]

The molyhdopterin cofactor, as found in different enzymes, may be present either as the nucleoside monophosphate or in the dinucleotide form. In some cases the molybdenum atom binds one single cofactor molecule, while in others, two pterin cofactors coordinate the metal. Molyhdopterin cytosine dinucleotide (MCD) is found in AORs from sulfate reducers, and molyhdopterin adenine dinucleotide and molyb-dopterin hypoxanthine dinucleotide were reported for other enzymes (205). The first structural evidence for binding of the dithiolene group of the pterin tricyclic system to molybdenum was shown for the AOR from Pyrococcus furiosus and D. gigas (199). In the latter, one molyb-dopterin cytosine dinucleotide (MCD) is used for molybdenum ligation. Two molecules of MGD are present in the formate dehydrogenase and nitrate reductase. [Pg.397]

The molybdenum cofactor was liberated from D. gigas AOR, and under appropriate conditions was transferred quantitatively to nitrate reductase in extracts of Neurospora crassa nit-1 mutant) to yield active nitrate reductase 217). On the basis of molybdenum content, the activity observed for reconstitution with molybdenum cofactor of D. gigas was lower (25%) than the values observed for the procedure using extractable molybdenum cofactor of XO, used as reference. This result can now be put in the context of the difference in pterin present (MPT-XO and MCD-AOR) 218). [Pg.400]

D. desulfuricans is able to grow on nitrate, inducing two enzymes that responsible for the steps of conversion of nitrate to nitrite (nitrate reductase-NAP), which is an iron-sulfur Mo-containing enzyme, and that for conversion of nitrite to ammonia (nitrite reduc-tase-NIR), which is a heme-containing enzyme. Nitrate reductase from D. desulfuricans is the only characterized enzyme isolated from a sulfate reducer that has this function. The enzyme is a monomer of 74 kDa and contains two MGD bound to a molybdenum and one [4Fe-4S] center (228, 229) in a single polypeptide chain of 753 amino acids. FXAFS data on the native nitrate reductase show that besides the two pterins coordinated to the molybdenum, there is a cysteine and a nonsulfur ligand, probably a Mo-OH (G. N. George, personal communication). [Pg.404]

FPR studies at low temperature detect the presence of one iron-sulfur center and molybdenum. At low temperature a sample of nitrate reductase reduced by dithionite shows a rhombic signal (gm,x = 2.04, gmed = 1.94, and gnm = 1.90). This signal accounts for 0.84 spins/... [Pg.404]

Eerrocene (1) was the first sandwich complex to be discovered, thereby opening a wide and competitive field of organometallic chemistry. The formation of ferrocene was found at almost the same time in two independent studies on July 11, 1951, Miller, Tebboth, and Tremaine reported that on the passage of N2 and cyclopenta-diene over a freshly prepared mixture of reduced Ee (90%), alumina (8%), potassium oxide (1%), and molybdenum oxide (1%) at 300°C, yellow crystals identified as Cp2Ee (Eig. 1) were obtained [1]. Due to the low yields obtained (3 g starting from 650 g ferric nitrate), doubts remain as to whether Ee(0) was the... [Pg.141]

Gaseous nitrate" is total amount of species converted to NO by the molybdenum catalyst of a commercial NO-NOx analyzer ( ). This includes N02f MONO and organic nitrates, and possibly nitros-amines and nitramines. [Pg.120]

The chlorate reductase has been characterized in strain GR-1 where it was found in the periplasm, is oxygen-sensitive, and contains molybdenum, and both [3Fe-4S] and [4Fe-4S] clusters (Kengen et al. 1999). The arsenate reductase from Chrysiogenes arsenatis contains Mo, Fe, and acid-labile S (Krafft and Macy 1998), and the reductase from Thauera selenatis that is specific for selenate, is located in the periplasmic space, and contains Mo, Fe, acid-labile S, and cytochrome b (Schroeder et al. 1997). In contrast, the membrane-bound selenate reductase from Enterobacter cloacae SLDla-1 that cannot function as an electron acceptor under anaerobic conditions contains Mo and Fe and is distinct from nitrate reductase (Ridley et al. 2006). [Pg.187]

Molybdenum sulphide, like any sulphide, reacts violently with oxidants. There was an accident reported describing a molybdenum sulphide/potassium nitrate mixture, which detonated. [Pg.218]

For nitrate reductase, evidence on the role of molybdenum in the catalytic mechanism of the enzyme from Neurospora was first presented in 1954 by Nicholas and Nason (21) and the position seems to have changed relatively little since then. The original conclusion (23) was that molybdenum functions as an electron carrier in the sequence ... [Pg.142]


See other pages where Molybdenum nitrates is mentioned: [Pg.52]    [Pg.212]    [Pg.145]    [Pg.435]    [Pg.52]    [Pg.212]    [Pg.145]    [Pg.435]    [Pg.469]    [Pg.476]    [Pg.38]    [Pg.271]    [Pg.317]    [Pg.2212]    [Pg.676]    [Pg.677]    [Pg.1179]    [Pg.1182]    [Pg.444]    [Pg.400]    [Pg.410]    [Pg.3]    [Pg.148]    [Pg.151]    [Pg.151]    [Pg.525]    [Pg.351]    [Pg.65]    [Pg.511]    [Pg.930]    [Pg.110]    [Pg.111]    [Pg.112]    [Pg.112]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



F Oxiranemethanol nitrate Oxodiperoxy molybdenum

Molybdenum complexes nitrate reduction

Nitrate reductase molybdenum

© 2024 chempedia.info