Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule in molecule method

Gilson, M. K., Sharp, K. A., Honig, B. H. Calculating the electrostatic potential of molecules in solution Method and error assessment. J. Comp. Chem. 9 (1988) 327-335. [Pg.195]

MINDO/3, MNDO, and AM 1 wxrc developed by the Dervar group at the University of i exasat Austin. This group ehose many parameters, such as heats of formation and geometries of sample molecules, to reproduce experimental quantities. The Dewar methods yield results that are closer to experiment than the CN DO and IN DO methods. [Pg.129]

VViberg and Rablen found that the charges obtained with the atoms in molecules method were relatively invariant to the basis set. The charges from this method were also consistent v it i the experimentally determined C-H bond dipoles in methane (in which the carbon is p isitive) and ethyne (in which the carbon is negative), unlike most of the other methods they examined. [Pg.101]

Another way of constructing wave functions for open-shell molecules is the restricted open shell Hartree-Fock method (ROHF). In this method, the paired electrons share the same spatial orbital thus, there is no spin contamination. The ROHF technique is more difficult to implement than UHF and may require slightly more CPU time to execute. ROHF is primarily used for cases where spin contamination is large using UHF. [Pg.21]

One recent development in DFT is the advent of linear scaling algorithms. These algorithms replace the Coulomb terms for distant regions of the molecule with multipole expansions. This results in a method with a time complexity of N for sufficiently large molecules. The most common linear scaling techniques are the fast multipole method (FMM) and the continuous fast multipole method (CFMM). [Pg.43]

An alternative formulation of QM/MM is the energy subtraction method. In this method, calculations are done on various regions of the molecule with... [Pg.200]

A similar technique is to derive a group additivity method. In this method, a contribution for each functional group must be determined. The contributions for the functional groups composing the molecule are then added. This is usually done from computations on a whole list of molecules using a htting technique, similar to that employed in QSPR. [Pg.208]

In this method, photons of an energy well in excess of the ionization potential are directed onto a molecule. The photoelectron spectrum which results allows assessment of the energies of filled orbitals in the molecule, and thus provides a characterization of a molecule. Comparisons between photoelectron spectra of related compounds give structural information, for example, on the tautomeric structure of a compound by comparison of its spectrum with those of models of each of the fixed forms. [Pg.30]

The mathematical model was based on the scheme utilized in chemiluminescent method that was supplement with the reactions of radicals, formed of inhibitor molecules - AO. [Pg.359]

Early diffraction photographs of such DNA fibers taken by Rosalind Franklin and Maurice Wilkins in London and interpreted by James Watson and Francis Crick in Cambridge revealed two types of DNA structures A-DNA and B-DNA. The B-DNA form is obtained when DNA is fully hydrated as it is in vivo. A-DNA is obtained under dehydrated nonphysiological conditions. Improvements in the methods for the chemical synthesis of DNA have recently made it possible to study crystals of short DNA molecules of any selected sequence. These studies have essentially confirmed the refined fiber diffraction models for A- and B-DNA and in addition have given details of small structural variations for different DNA sequences. Furthermore, a new structural form of DNA, called Z-DNA, has been discovered. [Pg.121]

Either UV-VIS or IR spectroscopy can be combined with the technique of matrix isolation to detect and identify highly unstable intermediates. In this method, the intomediate is trapped in a solid inert matrix, usually one of the inert gases, at very low temperatures. Because each molecule is surrounded by inert gas atoms, there is no possiblity for intermolecular reactions and the rates of intramolecular reactions are slowed by the low temperature. Matrix isolation is a very useful method for characterizing intermediates in photochemical reactions. The method can also be used for gas-phase reactions which can be conducted in such a way that the intermediates can be rapidly condensed into the matrix. [Pg.227]

The simplest SCRF model is the Onsager reaction field model. In this method, the solute occupies a fixed spherical cavity of radius Oq within the solvent field. A dipole in the molecule will induce a dipole in the medium, and the electric field applied by the solvent dipole will in turn interact with the molecular dipole, leading to net stabilization. [Pg.237]

You will find the detailed solution of the electronic Schrddinger equation for H2" in any rigorous and old-fashioned quantum mechanics text (such as EWK), together with the potential energy curve. If you are particularly interested in the method of solution, the key reference is Bates, Lodsham and Stewart (1953). Even for such a simple molecule, solution of the electronic Schrddinger equation is far from easy and the problem has to be solved numerically. Burrau (1927) introduced the so-called elliptic coordinates... [Pg.76]

We often refer to Heitler and London s method as the valence bond (VB) model. A comparison between the experimental and the valence bond potential energy curves shows excellent agreement at large 7 ab but poor quantitative agreement in the valence region (Table 4.3). The cause of this lies in the method itself the VB model starts from atomic wavefunctions and adds as a perturbation the fact that the electron clouds of the atoms are polarized when the molecule is formed. [Pg.94]

The most significant treatment of excited states within the CNDO approach is that of Del Bene and Jaffe, who made three modifications to the original CNDO parameterization scheme. Two of the modifications were just minor tinkering with the integral evaluation, and need not concern us. The key point in their method was the treatment of the p parameters. Think of a pair of bonded carbon atoms in a large molecule. Some of the p-type basis functions on Ca will be aligned to those on Cb in a type interaction was reduced. They wrote... [Pg.149]

Static Involving Use of Adsorption Isotherms BRUNAUER, EMMETT, AND TELLER (B.E.T.). In this method tire surface area is not measured directly, but the number of molecules of the adsorbed substance required to give a monolayer (N) is determined. If the mean area per molecule (a) of the adsorbed substance is known by other means, the area of the solid may... [Pg.529]

Values for c in each method are obtained by solving the equation for various values of each c and choosing the solution of lowest energy. In practice, both methods give similar solutions for molecules that contain only localized electrons, and these are in agreement with the Lewis structures long familiar to the organic chemist. Delocalized systems are considered in Chapter 2. [Pg.6]

In this method, the orbital symmetry rules are related to the Hiickel aromaticity rule discussed in Chapter 2. Huckel s mle, which states that a cyclic system of electrons is aromatic (hence, stable) when it consists of 4n + 2 electrons, applies of course to molecules in their ground states. In applying the orbital symmetry principle, we are not concerned with ground states, but with transition states. In the present method, we do not examine the molecular orbitals themselves but rather the p orbitals before they overlap to form the MO. Such a set of p orbitals is called a basis set (Fig. 15.5). In investigating the possibility of a concerted reaction, we put the basis sets into the position they would occupy in the transition state. Figure 15.6 shows this for both the... [Pg.1070]

Multiayer L-B films can be prepared in both methods, by repeated deposition of monolayer on the substrate, with the molecular direction changing alternatively after each deposition (Y-type), or keeping the same molecule direction in all monolayers (X-type or Z-type). [Pg.88]

In ion beam deposition, hydrocarbon gas such as methane or ethyene is ionized into plasma by an ion source such as the Kaufman source [3]. The hydrocarbon ions are then extracted from the ion source and accelerated to form an ion beam. The ions and the unionized molecules condense on the substrate surface to form DEC coating. However, in this method, ionized ratio of precursor gases could hardly exceed 10 %. In order to obtain a better quality of DEC coatings. [Pg.147]

To date, many of the reported ADME/Tox models have been rule based. For example, some research groups have used relatively simple filters like the rule of 5 [93] and others [94] to limit the types of molecules evaluated with in silico methods and to focus libraries for HTS. However, being designed as rapid computational alert tools aimed at a single property of interest, they cannot offer a comprehensive picture when it comes to understanding ADME properties. [Pg.366]

Zander Ch, Enderlein J, Keller RA (2002) (eds) Single molecule detection in solution. Methods and applications. Wiley-VCH, Weinheim, Germany... [Pg.189]


See other pages where Molecule in molecule method is mentioned: [Pg.20]    [Pg.216]    [Pg.446]    [Pg.448]    [Pg.452]    [Pg.454]    [Pg.291]    [Pg.384]    [Pg.532]    [Pg.166]    [Pg.702]    [Pg.720]    [Pg.731]    [Pg.257]    [Pg.533]    [Pg.181]    [Pg.562]    [Pg.78]    [Pg.145]    [Pg.419]    [Pg.455]    [Pg.785]    [Pg.146]    [Pg.206]    [Pg.157]    [Pg.95]    [Pg.43]    [Pg.770]    [Pg.1008]    [Pg.1532]    [Pg.169]    [Pg.241]    [Pg.58]    [Pg.70]    [Pg.118]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Atoms-in-molecules methods

Diatomics-in-molecules method

Electron Density Integrals and Atoms-in-Molecules Methods

Methods in the Construction of Complex Molecules

Molecules method

Nitrogen Relaxation in Large Molecules The Isotopic Substitution Method

Physical Principles and Methods of Single-Molecule Spectroscopy in Solids

© 2024 chempedia.info