Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule molecular interaction

Quantum Systems in Chemistry and Physics encompasses abroad spectrum of research where scientists of different backgrounds and interestsjointly place special emphasis on quantum theory applied to molecules, molecular interactions and materials. The meeting was divided into several sessions, each addressing a different aspect of the field 1 - Density matrices and density functionals 2 - Electron correlation treatments 3 - Relativistic formulations and effects 4 - Valence theory (chemical bond and bond breaking) 5 -Nuclear motion (vibronic effects and flexible molecules) 6 - Response theory (properties and spectra) 7 - Reactive collisions and chemical reactions, computational chemistry and physics and 8 - Condensed matter (clusters and crystals, surfaces and interfaces). [Pg.323]

D Quantum chemical descriptors Charge distribution in the molecules, molecular interaction fields 10 to 10 s... [Pg.569]

Molecular Molecules Molecular interaction forces —> Bulk properties / Continuum... [Pg.48]

Liquid Films and the Electrically Charged Double-Layer Amphipathic Organic Molecules Molecular Interactions The Skip Resistance of Automobile Tyres Conclusions... [Pg.6]

A component in a vapor mixture exhibits nonideal behavior as a result of molecular interactions only when these interactions are very wea)c or very infrequent is ideal behavior approached. The fugacity coefficient (fi is a measure of nonideality and a departure of < ) from unity is a measure of the extent to which a molecule i interacts with its neighbors. The fugacity coefficient depends on pressure, temperature, and vapor composition this dependence, in the moderate pressure region covered by the truncated virial equation, is usually as follows ... [Pg.37]

For the interaction between a nonlinear molecule and an atom, one can place the coordinate system at the centre of mass of the molecule so that the PES is a fiinction of tlie three spherical polar coordinates needed to specify the location of the atom. If the molecule is linear, V does not depend on <() and the PES is a fiinction of only two variables. In the general case of two nonlinear molecules, the interaction energy depends on the distance between the centres of mass, and five of the six Euler angles needed to specify the relative orientation of the molecular axes with respect to the global or space-fixed coordinate axes. [Pg.186]

The most important molecular interactions of all are those that take place in liquid water. For many years, chemists have worked to model liquid water, using molecular dynamics and Monte Carlo simulations. Until relatively recently, however, all such work was done using effective potentials [4T], designed to reproduce the condensed-phase properties but with no serious claim to represent the tme interactions between a pair of water molecules. [Pg.2449]

In dilute solutions, tire dependence of tire diffusion coefficient on tire molecular weight is different from tliat found in melts, eitlier entangled or not. This difference is due to tire presence of hydrodynamic interactions among tire solvent molecules. Such interactions arise from tire necessity to transfer solvent molecules from tire front to tire back of a moving particle. The motion of tire solvent gives rise to a flow field which couples all molecules over a... [Pg.2529]

The molecular surface of receptor site regions cannot be derived from the structure infoi mation of the molecule, bth represents the form ofthe active site of a protein surrounded by a ligand. This surface representation is employed in drug design in order to illustrate the volume of the pocket region or the molecular interaction layers [186. ... [Pg.128]

Knowledge of the spatial dimensions of a molecule is insufficient to imderstand the details of complex molecular interactions. In fact, molecular properties such as electrostatic potential, hydrophilic/lipophilic properties, and hydrogen bonding ability should be taken into account. These properties can be classified as scalar isosurfaces), vector field, and volumetric properties. [Pg.135]

After an alignment of a set of molecules known to bind to the same receptor a comparative molecular field analysis CoMFA) makes it possible to determine and visuahze molecular interaction regions involved in hgand-receptor binding [51]. Further on, statistical methods such as partial least squares regression PLS) are applied to search for a correlation between CoMFA descriptors and biological activity. The CoMFA descriptors have been one of the most widely used set of descriptors. However, their apex has been reached. [Pg.428]

The formation of a simple El mass spectrum from a number (p) of molecules (M) interacting with electrons (ep. Peak 1 represents M , the molecular ion, the ion of greatest mass (abundance q). Peaks 2, 3 represent A+, B. two fragment ions (abundances r, s). Peak 2 is also the largest and, therefore, the base peak. [Pg.14]

Molecular Interaction. The examples of gas lasers described above involve the formation of chemical compounds in their excited states, produced by reaction between positive and negative ions. However, molecules can also interact in a formally nonbonding sense to give complexes of very short lifetimes, as when atoms or molecules collide with each other. If these sticky collisions take place with one of the molecules in an electronically excited state and the other in its ground state, then an excited-state complex (an exciplex) is formed, in which energy can be transferred from the excited-state molecule to the ground-state molecule. The process is illustrated in Figure 18.12. [Pg.130]

There are two ways in which the volume occupied by a sample can influence the Gibbs free energy of the system. One of these involves the average distance of separation between the molecules and therefore influences G through the energetics of molecular interactions. The second volume effect on G arises from the contribution of free-volume considerations. In Chap. 2 we described the molecular texture of the liquid state in terms of a model which allowed for vacancies or holes. The number and size of the holes influence G through entropy considerations. Each of these volume effects varies differently with changing temperature and each behaves differently on opposite sides of Tg. We shall call free volume that volume which makes the second type of contribution to G. [Pg.249]

In the liquid state molecules are in intimate contact, so the energetics of molecular interactions generally make a contribution to the overall picture of the mixing process. There are several aspects of the situation that we should be aware of before attempting to formulate a theory for ... [Pg.521]

When two or more molecular species involved in a separation are both adsorbed, selectivity effects become important because of interaction between the 2eobte and the adsorbate molecule. These interaction energies include dispersion and short-range repulsion energies (( ) and ( )j ), polarization energy (( )p), and components attributed to electrostatic interactions. [Pg.449]

The abiHty to tailor both head and tail groups of the constituent molecules makes SAMs exceUent systems for a more fundamental understanding of phenomena affected by competing intermolecular, molecular—substrate and molecule—solvent interactions, such as ordering and growth, wetting, adhesion, lubrication, and corrosion. Because SAMs are weU-defined and accessible, they are good model systems for studies of physical chemistry and statistical physics in two dimensions, and the crossover to three dimensions. [Pg.536]

Molecular Interactions. Various polysaccharides readily associate with other substances, including bile acids and cholesterol, proteins, small organic molecules, inorganic salts, and ions. Anionic polysaccharides form salts and chelate complexes with cations some neutral polysaccharides form complexes with inorganic salts and some interactions are stmcture specific. Starch amylose and the linear branches of amylopectin form inclusion complexes with several classes of polar molecules, including fatty acids, glycerides, alcohols, esters, ketones, and iodine/iodide. The absorbed molecule occupies the cavity of the amylose helix, which has the capacity to expand somewhat to accommodate larger molecules. The starch—Hpid complex is important in food systems. Whether similar inclusion complexes can form with any of the dietary fiber components is not known. [Pg.71]

Reduced Properties. One of the first attempts at achieving an accurate analytical model to describe fluid behavior was the van der Waals equation, in which corrections to the ideal gas law take the form of constants a and b to account for molecular interactions and the finite volume of gas molecules, respectively. [Pg.239]

When a gas comes in contact with a solid surface, under suitable conditions of temperature and pressure, the concentration of the gas (the adsorbate) is always found to be greater near the surface (the adsorbent) than in the bulk of the gas phase. This process is known as adsorption. In all solids, the surface atoms are influenced by unbalanced attractive forces normal to the surface plane adsorption of gas molecules at the interface partially restores the balance of forces. Adsorption is spontaneous and is accompanied by a decrease in the free energy of the system. In the gas phase the adsorbate has three degrees of freedom in the adsorbed phase it has only two. This decrease in entropy means that the adsorption process is always exothermic. Adsorption may be either physical or chemical in nature. In the former, the process is dominated by molecular interaction forces, e.g., van der Waals and dispersion forces. The formation of the physically adsorbed layer is analogous to the condensation of a vapor into a liquid in fret, the heat of adsorption for this process is similar to that of liquefoction. [Pg.736]

The standard free energy can be divided up in two ways to explain the mechanism of retention. First, the portions of free energy can be allotted to specific types of molecular interaction that can occur between the solute molecules and the two phases. This approach will be considered later after the subject of molecular interactions has been discussed. The second requires that the molecule is divided into different parts and each part allotted a portion of the standard free energy. With this approach, the contributions made by different parts of the solvent molecule to retention can often be explained. This concept was suggested by Martin [4] many years ago, and can be used to relate molecular structure to solute retention. Initially, it is necessary to choose a molecular group that would be fairly ubiquitous and that could be used as the first building block to develop the correlation. The methylene group (CH2) is the... [Pg.54]

The dipoles are shown interacting directly as would be expected. Nevertheless, it must be emphasized that behind the dipole-dipole interactions will be dispersive interactions from the random charge fluctuations that continuously take place on both molecules. In the example given above, the net molecular interaction will be a combination of both dispersive interactions from the fluctuating random charges and polar interactions from forces between the two dipoles. Examples of substances that contain permanent dipoles and can exhibit polar interactions with other molecules are alcohols, esters, ethers, amines, amides, nitriles, etc. [Pg.67]

There are two ways a solute can interact with a stationary phase surface. The solute molecule can interact with the adsorbed solvent layer and rest on the top of it. This is called sorption interaction and occurs when the molecular forces between the solute and the stationary phase are relatively weak compared with the forces between the solvent molecules and the stationary phase. The second type is where the solute molecules displace the solvent molecules from the surface and interact directly with the stationary phase itself. This is called displacement interaction and occurs when the interactive forces between the solute molecules and the stationary phase surface are much stronger than those between the solvent molecules and the stationary phase surface. An example of sorption interaction is shown in Figure 9. [Pg.99]


See other pages where Molecule molecular interaction is mentioned: [Pg.32]    [Pg.570]    [Pg.32]    [Pg.570]    [Pg.634]    [Pg.201]    [Pg.1069]    [Pg.2816]    [Pg.268]    [Pg.59]    [Pg.124]    [Pg.13]    [Pg.506]    [Pg.273]    [Pg.192]    [Pg.240]    [Pg.248]    [Pg.252]    [Pg.518]    [Pg.123]    [Pg.10]    [Pg.48]    [Pg.72]    [Pg.83]    [Pg.84]    [Pg.87]    [Pg.141]    [Pg.143]    [Pg.12]    [Pg.22]   
See also in sourсe #XX -- [ Pg.19 , Pg.23 , Pg.44 , Pg.197 ]




SEARCH



Molecular interactions

Molecular interactive

Molecule interaction

© 2024 chempedia.info