Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular weight reactors

First-stage reactor conditions space velocity, vol/vol hr feed gas flow rate, lb/hr recycle flow rate, lb/hr recycle molecular weight reactor temperatures, °C... [Pg.143]

Component Molecular Weight Reactor Composition Mole Fraction ... [Pg.407]

Ethylene and comonomer are purified and dissolved in a solvent. An activated catalyst is added to that solution, which is then fed to a stirred reactor. The temperature of the feed stream controls reactor temperature, which is a major determinant of polymer molecular weight. Reactor temperatures are usually 170-250°C with pressures of 4-14 MPa (500-2000 psi). The solution is then fed to a secondary, trimmer reactor where further polymerization takes place. Chelating agents are injected into the solution to neutralize active catalyst. A high pressure flash vessel is used to remove monomer and about 90% of the solvent. A secondary devolatilization step is required to completely remove solvent. Granular polymer is then conveyed for pelletization. [Pg.2924]

Before we can explore how reactor conditions can be chosen, we require some measure of reactor performance. For polymerization reactors, the most important measure of performance is the distribution of molecular weights in the polymer product. The distribution of molecular weights dictates the mechanical properties of the polymer. For other types of reactors, three important parameters are used to describe their performance ... [Pg.22]

In a typical adiabatic polymerization, approximately 20 wt % aqueous acrylamide is charged into a stainless steel reactor equipped with agitation, condenser, and cooling jacket or coils. To initiate the polymerization, an aqueous solution of sodium bisulfite [7631-90-5] is added, followed by the addition of a solution of ammonium persulfate [7727-54-0] N2HgS20g. As the polymerization proceeds, the temperature rises to about 90°C, and then begins to fall at the end of the polymerization. The molecular weight obtained depends primarily on the initiator concentration employed. [Pg.142]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

In early reaction systems (9,10,31,32) the vaporized hydrocarbon was combined with nitrogen in a reactor and mixed with a nitrogen—fluorine mixture from a preheated source. The jet reactor (11) for low molecular weight fluorocarbons was an important improvement. The process takes place at around 200—300°C, and fluorination is carried out in the vapor state. [Pg.276]

The synthesis of the high molecular weight polymer from chlorotrifluoroethylene [79-38-9] has been carried out in bulk (2 >—21 solution (28—30), suspension (31—36), and emulsion (37—41) polymerisation systems using free-radical initiators, uv, and gamma radiation. Emulsion and suspension polymers are more thermally stable than bulk-produced polymers. Polymerisations can be carried out in glass or stainless steel agitated reactors under conditions (pressure 0.34—1.03 MPa (50—150 psi) and temperature 21—53°C) that require no unique equipment. [Pg.394]

The majority of thermal polymerizations are carried out as a batch process, which requires a heat-up and a cool down stage. Typical conditions are 250—300°C for 0.5—4 h in an oxygen-free atmosphere (typically nitrogen) at approximately 1.4 MPa (200 psi). A continuous thermal polymerization has been reported which utilizes a tubular flow reactor having three temperature zones and recycle capabiHty (62). The advantages of this process are reduced residence time, increased production, and improved molecular weight control. Molecular weight may be controlled with temperature, residence time, feed composition, and polymerizate recycle. [Pg.355]

Molecular Weight Distribution. In industry, the MWD of PE resins is often represented by the value of the melt flow ratio (MER) as defined in Table 2. The MER value of PE is primarilly a function of catalyst type. Phillips catalysts produce PE resins with a broad MWD and their MER usually exceeds 100 Ziegler catalysts provide resins with a MWD of a medium width (MFR = 25-50) and metallocene catalysts produce PE resins with a narrow MWD (MFR = 15-25). IfPE resins with especially broad molecular weight distributions are needed, they can be produced either by using special mixed catalysts or in a series of coimected polymerization reactors operating under different reaction conditions. [Pg.369]

Recycle and Polymer Collection. Due to the incomplete conversion of monomer to polymer, it is necessary to incorporate a system for the recovery and recycling of the unreacted monomer. Both tubular and autoclave reactors have similar recycle systems (Fig. 1). The high pressure separator partitions most of the polymers from the unreacted monomer. The separator overhead stream, composed of monomer and a trace of low molecular weight polymer, enters a series of coolers and separators where both the reaction heat and waxy polymers are removed. Subsequendy, this stream is combined with fresh as well as recycled monomers from the low pressure separator together they supply feed to the secondary compressor. [Pg.373]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

The Amoco reactor operates at 70—80°C and 2 MPa (300 psi) reactor pressure. The existence of several partially isolated compartments allows a semi-iadependent control of temperature as well as comonomer and hydrogen concentrations within each section, which ia turn offers a substantial control of the molecular weight and MWD of resias. Amoco technology also accommodates a large variety of polymerization catalysts, including Phillips and Ziegler catalysts. [Pg.386]

Processes for HDPE with Broad MWD. Synthesis of HDPE with a relatively high molecular weight and a very broad MWD (broader than that of HDPE prepared with chromium oxide catalysts) can be achieved by two separate approaches. The first is to use mixed catalysts containing two types of active centers with widely different properties (50—55) the second is to employ two or more polymerization reactors in a series. In the second approach, polymerization conditions in each reactor are set drastically differendy in order to produce, within each polymer particle, an essential mixture of macromolecules with vasdy different molecular weights. Special plants, both slurry and gas-phase, can produce such resins (74,91—94). [Pg.387]

However, some semiaromatic nylons can give problems as a result of the high melt viscosity. A process for produciag polymers of hexamethylenediamine, adipic acid, terephthaUc acid, and isophthaUc acid has been developed, which iavolves vaporising the salt mixture ia a high temperature flash reactor followed by molecular weight iacrease ia a twia-screw extmder with efficient moisture removal (17). [Pg.272]


See other pages where Molecular weight reactors is mentioned: [Pg.272]    [Pg.80]    [Pg.272]    [Pg.80]    [Pg.34]    [Pg.34]    [Pg.124]    [Pg.121]    [Pg.194]    [Pg.127]    [Pg.278]    [Pg.279]    [Pg.279]    [Pg.279]    [Pg.280]    [Pg.280]    [Pg.307]    [Pg.283]    [Pg.17]    [Pg.195]    [Pg.35]    [Pg.198]    [Pg.372]    [Pg.383]    [Pg.386]    [Pg.397]    [Pg.399]    [Pg.400]    [Pg.413]    [Pg.416]    [Pg.233]    [Pg.233]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.316]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Molecular reactors

© 2024 chempedia.info