Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular transient processes

In the past, combustion modeling was directed towards ffuid mechanics that included global heat release by chemical reaction. The latter was often described simply with the help of thermodynamics, assuming that the chemical reactions are much faster than the other processes like diffusion, heat conduction, and flow. However, in most cases chemistry occurs on time scales which are comparable with those of flow and molecular transport. As a consequence, detailed information about the individual elementary reactions is required if transient processes like ignition and flame quenching or pollutant formation shall be successfully modeled. The fundamental concept of using elementary reactions to describe a macroscopic... [Pg.207]

The endotherm observed at temperatures lower than 125 °C represents the loss of adsorbed water associated with low molecular mass volatile gas. The second broad endotherm at 300-465 °C is due to the formation of a metaplastic system. The large exotherm at 465-510 °C is attributed to a primary carbonization stage as a result of the formation of semi-coke. In the pyrolyzed gas evolved in the primary carbonization stage, Hj, CH4 and CjCyC, HjO, etc, are detected on the gas chromatogram. The second carbonization stage at about 510-750 °C is a transient process from semi-coke to coke (C J, ethylene C3, propylene C3, propane). [Pg.415]

The mechanisms of mass transport can be divided into convective and molecular flow processes. Convective flow is either forced flow, for example, in pipes and packed beds, or natural convection induced by temperature differences in a fluid. For diffusive flow we have to distinguish whether we have molecular diffusion in a free fluid phase or a more complicated effective diffusion in porous solids. Like heat transport, diffusion may be steady-state or transient. [Pg.66]

We study first liquid separation through practically nonporous membranes and then we move on to porous membranes. Of the known techniques using nonporous membranes, (reverse osmosis, dialysis, liquid membrane permeation and pervaporation), we select the most common, reverse osmosis, to begin our study of integrated flux expression development. Pervaporation is considered next There is one feature which is, however, common to almost all nonporous membrane processes i.e. the additional phase, the membrane phase, is stationary in general (except in cases of rapid transient membrane swelling or emulsion liquid membranes). This is in contrast to molecular diffusion processes in a gas or liquid where all species can diffuse (they may or may not). [Pg.170]

While the previous chapter emphasized the high speotral resolution achievable with different sub-Doppler techniques, this chapter concentrates on some methods which allow high time resolution. The generation of extremely short and intense laser pulses has opened the way for the study of fast transient phenomena, such as molecular relaxation processes in gases or liquids due to spontaneous or collision-induced transitions. A new field of laser spectroscopy is the time-resolved detection of coherence and interference effects such as quantum beats or coherent transients monitored with pulse Fowoiev transform spectroscopy. [Pg.546]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

In studies of molecular dynamics, lasers of very short pulse lengths allow investigation by laser-induced fluorescence of chemical processes that occur in a picosecond time frame. This time period is much less than the lifetimes of any transient species that could last long enough to yield a measurable vibrational spectrum. Such measurements go beyond simple detection and characterization of transient species. They yield details never before available of the time behavior of species in fast reactions, such as temporal and spatial redistribution of initially localized energy in excited molecules. Laser-induced fluorescence characterizes the molecular species that have formed, their internal energy distributions, and their lifetimes. [Pg.259]

Curing of Polyimlde Resin. Thermoset processing involves a large number of simultaneous and interacting phenomena, notably transient and coupled heat and mass transfer. This makes an empirical approach to process optimization difficult. For instance, it is often difficult to ascertain the time at which pressure should be applied to consolidate the laminate. If the pressure is applied too early, the low resin viscosity will lead to excessive bleed and flash. But if the pressure is applied too late, the diluent vapor pressure will be too high or the resin molecular mobility too low to prevent void formation. This example will outline the utility of our finite element code in providing an analytical model for these cure processes. [Pg.276]

Both the heat and cold shock response are universal and have been studied extensively. The major heat shock proteins (HSPs) are highly conserved. They are involved in the homeostatic adaptation of cells to harsh environmental conditions. Some act as molecular chaperones for protein folding, while others are involved in the processing of denatured polypeptides whose accumulation would be deleterious. The cold shock results in the transient induction of cold shock proteins (CSPs), which include a family of small acidic proteins carrying the cold shock domain. The CSPs appear to be involved in various cellular functions such as transcription, translation and DNA recombination. [Pg.3]

Transient reactors, such as pulse (chromatographic) reactors, temporary analysis of products (TAP) reactors, multitrack reactors, and temperature-programmed reactors have been developed mainly to study gas-solid (catalyst) reactions. These are rather sophisticated techniques used to study mechanisms of catalytic processes at the molecular level in great detail. Since this is rarely done in the development of processes for the manufacture of fine chemicals and pharmaceuticals, these reactors are not discussed further. The interested reader is referred to works by Anderson and Pratt (1985) and Kapteijn and Moulijn (1997). [Pg.295]

Studies of the effect of permeant s size on the translational diffusion in membranes suggest that a free-volume model is appropriate for the description of diffusion processes in the bilayers [93]. The dynamic motion of the chains of the membrane lipids and proteins may result in the formation of transient pockets of free volume or cavities into which a permeant molecule can enter. Diffusion occurs when a permeant jumps from a donor to an acceptor cavity. Results from recent molecular dynamics simulations suggest that the free volume transport mechanism is more likely to be operative in the core of the bilayer [84]. In the more ordered region of the bilayer, a kink shift diffusion mechanism is more likely to occur [84,94]. Kinks may be pictured as dynamic structural defects representing small, mobile free volumes in the hydrocarbon phase of the membrane, i.e., conformational kink g tg ) isomers of the hydrocarbon chains resulting from thermal motion [52] (Fig. 8). Small molecules can enter the small free volumes of the kinks and migrate across the membrane together with the kinks. [Pg.817]

The F + H2 — HF + FI reaction is one of the most studied chemical reactions in science, and interest in this reaction dates back to the discovery of the chemical laser.79 In the early 1970s, a collinear quantum scattering treatment of the reaction predicted the existence of isolated resonances.80 Subsequent theoretical investigations, using various dynamical approximations on several different potential energy surfaces (PESs), essentially all confirmed this prediction. The term resonance in this context refers to a transient metastable species produced as the reaction occurs. Transient intermediates are well known in many kinds of atomic and molecular processes, as well as in nuclear and particle physics.81 What makes reactive resonances unique is that they are not necessarily associated with trapping... [Pg.30]

Timm, Gilbert, Ko, and Simmons O) presented a dynamic model for an isothermal, continuous, well-mixed polystyrene reactor. This model was in turn based upon the kinetic model developed by Timm and co-workers (2-4) based on steady state data. The process was simulated using the model and a simple steady state optimization and decoupling algorithm was tested. The results showed that steady state decoupling was adequate for molecular weight control, but not for the control of production rate. In the latter case the transient fluctuations were excessive. [Pg.187]


See other pages where Molecular transient processes is mentioned: [Pg.202]    [Pg.20]    [Pg.92]    [Pg.200]    [Pg.169]    [Pg.7]    [Pg.480]    [Pg.202]    [Pg.744]    [Pg.566]    [Pg.167]    [Pg.18]    [Pg.400]    [Pg.401]    [Pg.135]    [Pg.80]    [Pg.73]    [Pg.77]    [Pg.78]    [Pg.1070]    [Pg.432]    [Pg.141]    [Pg.286]    [Pg.96]    [Pg.448]    [Pg.1070]    [Pg.177]    [Pg.190]    [Pg.21]    [Pg.232]    [Pg.110]    [Pg.109]    [Pg.21]    [Pg.29]    [Pg.179]    [Pg.115]    [Pg.184]    [Pg.67]   
See also in sourсe #XX -- [ Pg.445 ]




SEARCH



Molecular processes

Molecular processing

Transient process

© 2024 chempedia.info