Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular supersonic

Some fundamental aspects of the nucleation process have been investigated by molecular dynamics (MD) methods. In a recent review [44] the advantages and limitations of molecular cluster models in simulating the dynamics of nucleation and phase changes have been discussed. In this approach, molecular dynamic simulations are correlated with experimental nucleation rates extracted from electron diffraction patterns of molecular supersonic jets. The dynamics of freezing of ammonia, CCI4 and water, and the phase transformations of t-butyl chloride have been analysed. A useful feature of the MD computational... [Pg.167]

The Molecular Beam Machine and the Detection System. The second component of the real-time MPI experiments is a molecular supersonic beam machine [116] with a quadrupole mass spectrometer (QMS), allowing the detection of ionized molecules and clusters with high sensitivity. A side elevation is shown in Fig. 2.17. The production of the molecular beam and the interaction of the laser pulse trains with the molecular beam are performed in a differentially pumped vacuum apparatus consisting of two separate chambers, which are briefly described in the following two paragraphs. A more detailed sketch of the two-chamber system is presented in Fig. 2.18. The production sub-chamber (oven chamber) is pumped by a 3000 /s oil diffusion pump (Balzers) with a baffle at the flange to the oven chamber to allow a pressure in the chamber of less then 10 mbar. During the experiments the pressure is typically 5 x 10 to 3 x 10 bar. In the second chamber a maximum pressure of 10 mbar is established by a 2200 /s turbomolecular pump (Balzers). [Pg.26]

Randeniya LK, Smith MA. (1990) A study of molecular supersonic flow nsing the generalized Boltzmann equation. J. Chem. Phys. 93 661 73. [Pg.115]

As with most methods for studying ion-molecule kinetics and dynamics, numerous variations exist. For low-energy processes, the collision cell can be replaced with a molecular beam perpendicular to the ion beam [106]. This greatly reduces the thennal energy spread of the reactant neutral. Another approach for low energies is to use a merged beam [103]. In this system the supersonic expansion is aimed at the tluoat of the octopole, and the ions are passed tluough... [Pg.812]

Several instniments have been developed for measuring kinetics at temperatures below that of liquid nitrogen [81]. Liquid helium cooled drift tubes and ion traps have been employed, but this apparatus is of limited use since most gases freeze at temperatures below about 80 K. Molecules can be maintained in the gas phase at low temperatures in a free jet expansion. The CRESU apparatus (acronym for the French translation of reaction kinetics at supersonic conditions) uses a Laval nozzle expansion to obtain temperatures of 8-160 K. The merged ion beam and molecular beam apparatus are described above. These teclmiques have provided important infonnation on reactions pertinent to interstellar-cloud chemistry as well as the temperature dependence of reactions in a regime not otherwise accessible. In particular, infonnation on ion-molecule collision rates as a ftmction of temperature has proven valuable m refining theoretical calculations. [Pg.813]

Valentin J J, Coggiola M J and Lee Y T 1977 Supersonic atomic and molecular halogen nozzle beam source Rev. Sc/. Instrum 48 58-63... [Pg.2086]

The fonnation of clusters in the gas phase involves condensation of the vapour of the constituents, with the exception of the electrospray source [6], where ion-solvent clusters are produced directly from a liquid solution. For rare gas or molecular clusters, supersonic beams are used to initiate cluster fonnation. For nonvolatile materials, the vapours can be produced in one of several ways including laser vaporization, thennal evaporation and sputtering. [Pg.2388]

Molecular clusters are weakly bound aggregates of stable molecules. Such clusters can be produced easily using supersonic expansion, and have been extensively studied by both electronic and vibrational spectroscopy [146,... [Pg.2400]

If a particularly parallel beam is required in the chamber into which it is flowing the beam may be skimmed in the region of hydrodynamic flow. A skimmer is a collimator which is specially constructed in order to avoid shockwaves travelling back into the gas and increasing 7). The gas that has been skimmed away may be pumped off in a separate vacuum chamber. Further collimation may be carried out in the region of molecular flow and a so-called supersonic beam results. When a skimmer is not used, a supersonic jet results this may or may not be collimated. [Pg.396]

Electronic transitions in molecules in supersonic jets may be investigated by intersecting the jet with a tunable dye laser in the region of molecular flow and observing the total fluorescence intensity. As the laser is tuned across the absorption band system a fluorescence excitation spectrum results which strongly resembles the absorption spectrum. The spectrum... [Pg.396]

Laser spectroscopy is such a wide subject, with many ingenious experiments using one or two CW or pulsed lasers to study atomic or molecular stmcture or dynamics, that it is difficult to do justice to it at the level at which Modern Spectroscopy is aimed. In this edition 1 have expanded the section on supersonic jet spectroscopy, which is an extremely important and wide-ranging field. [Pg.469]

New to the fourth edition are the topics of laser detection and ranging (LIDAR), cavity ring-down spectroscopy, femtosecond lasers and femtosecond spectroscopy, and the use of laser-induced fluorescence excitation for stmctural investigations of much larger molecules than had been possible previously. This latter technique takes advantage of two experimental quantum leaps the development of very high resolution lasers in the visible and ultraviolet regions and of the supersonic molecular beam. [Pg.472]

Beam Spectroscopy. Both specificity and sensitivity can be gready enhanced by suppressing coUisional and Doppler broadening. This is accompHshed in supersonic atomic and molecular beams (296) by probing the beam transversely to its direction of dow in a near-coUisionless regime. [Pg.321]

We have so far assumed that the atoms deposited from the vapor phase or from dilute solution strike randomly and balHstically on the crystal surface. However, the material to be crystallized would normally be transported through another medium. Even if this is achieved by hydrodynamic convection, it must nevertheless overcome the last displacement for incorporation by a random diffusion process. Therefore, diffusion of material (as well as of heat) is the most important transport mechanism during crystal growth. An exception, to some extent, is molecular beam epitaxy (MBE) (see [3,12-14] and [15-19]) where the atoms may arrive non-thermalized at supersonic speeds on the crystal surface. But again, after their deposition, surface diffusion then comes into play. [Pg.880]

Quite apart from the fullerene cluster molecules, numerous other molecular allotropes of carbon, C , have been discovered in the gases formed by the laser vaporization/supersonic expansion of graphite. The products are detected by mass... [Pg.282]

If two different three-dimensional arrangements in space of the atoms in a molecule are interconvertible merely by free rotation about bonds, they are called conformationsIf they are not interconvertible, they are called configurations Configurations represent isomers that can be separated, as previously discussed in this chapter. Conformations represent conformers, which are rapidly interconvertible and are thus nonseparable. The terms conformational isomer and rotamer are sometimes used instead of conformer . A number of methods have been used to determine conformations. These include X-ray and electron diffraction, IR, Raman, UV, NMR, and microwave spectra, photoelectron spectroscopy, supersonic molecular jet spectroscopy, and optical rotatory dispersion (ORD) and CD measurements. Some of these methods are useful only for solids. It must be kept in mind that the conformation of a molecule in the solid state is not necessarily the same as in solution. Conformations can be calculated by a method called molecular mechanics (p. 178). [Pg.167]

The spectrometer is fitted with a skimmed c.w. supersonic molecular beam source. Many chiral species of interest are of low volatility, so a heated nozzle-reservoir assembly is used to generate, in a small chamber behind a 70-pm pinhole, a sample vapor pressure that is then seeded in a He carrier gas as it expands through the nozzle [103], Further details of this apparatus are given elsewhere [36, 102, 104],... [Pg.305]

Figure 7.2. The uptake of carbon by dissociative adsorption of methane on Ni(lll) follows f rst-order kinetics. The experiment involved dosing the surface with a supersonic beam of molecular methane at the indicated... Figure 7.2. The uptake of carbon by dissociative adsorption of methane on Ni(lll) follows f rst-order kinetics. The experiment involved dosing the surface with a supersonic beam of molecular methane at the indicated...
There are at least three approaches to fast GC/MS (1) use of microbore columns with time-of-flight mass spectrometry (TOFMS) (2) use of low-pressure (LP)-GC/MS to aid separations at increased flow rate " and (3) use of supersonic molecular beam mass spectrometry (SMBMS) (also known as supersonic GC/MS), which can accept increased flow rates and short analytical columns."... [Pg.763]

Supersonic molecular beam (SMB) mass spectrometry (SMB-MS) measures the mass spectrum of vibra-tionally cold molecules (cold El). Supersonic molecular beams [43] are formed by the co-expansion of an atmospheric pressure helium or hydrogen carrier gas, seeded with heavier sample organic molecules, through a simple pinhole (ca. 100 p,m i.d.) into a 10 5-mbar vacuum with flow-rates of 200 ml. rn in. In SMB, molecular ionisation is obtained either through improved electron impact ionisation, or through hyperthermal surface ionisation... [Pg.360]

Enhanced molecular ion implies reduced matrix interference. An SMB-El mass spectrum usually provides information comparable to field ionisation, but fragmentation can be promoted through increase of the electron energy. For many compounds the sensitivity of HSI can be up to 100 times that of El. Aromatics are ionised with a much greater efficiency than saturated compounds. Supersonic molecular beams are used in mass spectrometry in conjunction with GC-MS [44], LC-MS [45] and laser-induced multiphoton ionisation followed by time-of-flight analysis [46]. [Pg.361]

Isotope abundance and elemental information is exhibited in cold El mass spectra, due to the enhanced molecular ion and the ionisation of isolated molecules without Cl-type reactions. Supersonic LC-MS provides a linear response, unlike LC-PB-MS. LC-SMB-MS is expected to compete with APPI, APCI and PB LC-MS modes (Scheme 7.8 and Figure 6.4). [Pg.503]


See other pages where Molecular supersonic is mentioned: [Pg.823]    [Pg.1244]    [Pg.1256]    [Pg.1823]    [Pg.1824]    [Pg.2061]    [Pg.2065]    [Pg.2066]    [Pg.2066]    [Pg.2439]    [Pg.396]    [Pg.94]    [Pg.52]    [Pg.257]    [Pg.336]    [Pg.165]    [Pg.764]    [Pg.303]    [Pg.461]    [Pg.463]    [Pg.464]    [Pg.464]    [Pg.465]    [Pg.503]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Molecular beam supersonic

Molecular beams supersonic expansion

Supersonic

Supersonic jets molecular beam electronic spectroscopy

Supersonic molecular beam interface

Supersonic molecular beam mass spectrometry

Supersonic molecular jet

Supersonic molecular jet spectroscopy

© 2024 chempedia.info