Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular sieve zeolites, crystalline structures

Crystal lattice packing, 12 249-250 Crystal lattice vibrations, 14 236 Crystalline adsorbents, 1 586, 589. See also Molecular sieves Zeolites for gas separation, 1 631 properties and applications, l 588t Crystalline alkali silicates, atomic structure of, 22 454-455 Crystalline cellulose, 5 373-379 Crystalline epoxy resins, 10 373-374 Crystalline flake graphite, 12 793 manufacture and processing of, 12 781-784... [Pg.235]

Zeolite molecular sieves are composed of silicon and aluminum and can be natural or manmade minerals. Molecular sieves are crystalline, hydrated aluminosilicates of (most commonly) sodium, calcium, potassium, and magnesium. The alumininosilicate portion of the structure is a three-dimensional open framework consisting of a network of A104 and Si04 tetrahedra linked to each other by sharing all of the oxygens (Sherman, 1978). Zeolites may be represented by the empirical formula... [Pg.248]

Zeolite Structures These are crystalline, microporous solids that contain cavities and channels of molecular dimensions (3 A to 10A) and sometimes are called molecular sieves. Zeolites are used principally in catalysis, separation, purification, and ion exchange The fundamental building block of a zeolite is a tetrahedron of four oxygen atoms surrounding a central silicon atom (i.e.. (Si04)4-). From the fundamental unit, numerous combinations of secondary building units (polygons) can be formed. The corners of these polyhedra may he Si or A1 atoms.2... [Pg.65]

Molecular-sieve zeolites represent an unique class of material [12-15]. This materials are crystalline aluminosilicates with open-framework structures made up of the primary building blocks [Si04]4 and [A104]5 tetrahedra that are linked by... [Pg.318]

As the shortcomings of the traditional preparative methods outlined above became apparent, it was realized that alternative procedures were required to produce uniform or tailor-made adsorbents and shape-selective catalysts. As we saw in Chapter 11, one major route was opened up by the Linde synthesis in 1956 of the crystalline molecular sieve zeolite A. The search for new microporous crystalline materials has continued unremittingly and has resulted in the synthesis of novel zeolitic structures including the aluminophosphates, which are featured in this chapter. [Pg.403]

Molecular sieve zeolites constitute a class of stationary phase that combines exclusion with specific adsorption properties. These materials, which are crystalline aluminum silicates (commonly sodium or calcium aluminum silicates), have rigid, highly uniform three-dimensional porous structures containing up to 0.5ml/g of free pore volume, resulting when water of crystallization is removed by heating. Although munerous natural zeolites are known, most practical work is done with... [Pg.513]

Molecular sieve zeolites have become established as an area of scientific research and as commercial materials for use as sorbents and catalysts. Continuing studies on their synthesis, structure, and sorption properties will, undoubtedly, lead to broader application. In addition, crystalline zeolites offer one of the best vehicles for studying the fundamentals of heterogeneous catalysis. Several discoveries reported at this conference point toward new fields of investigation and potential commercial utility. These include phosphorus substitution into the silicon-aluminum framework, the structural modifications leading to ultrastable faujasite, and the catalytic properties of sodium mordenite. [Pg.451]

Molecular sieve zeolites " are hydrated, crystalline aluminosilicates which give off their crystal water without changing their crystal structure so that the original water sites are free for the adsorption of other compounds. Activation of zeolites is a dehydration process accomplished by the application of heat in a high vacuum. Some zeolite crystals show behavior opposite to that of activated carbon in that they selectively adsorb water in the presence of nonpolar solvents. Zeolites can be made to have specific pore sizes that impose limits on the size and orientation of molecules that can be adsorbed. Molecules above a specific size cannot enter the pores and therefore cannot be adsorbed (steric separation effect). [Pg.1514]

Adsorbents Table 16-3 classifies common adsorbents by structure type and water adsorption characteristics. Structured adsorbents take advantage of their crystalline structure (zeolites and sllicalite) and/or their molecular sieving properties. The hydrophobic (nonpolar surface) or hydrophihc (polar surface) character may vary depending on the competing adsorbate. A large number of zeolites have been identified, and these include both synthetic and naturally occurring (e.g., mordenite and chabazite) varieties. [Pg.1500]

Molecular sieves are porous solids with pores of the size of molecular dimensions, 0.3-2.0nm in diameter. Examples include zeoUtes, carbons, glasses and oxides. Some are crystalline with a uniform pore size deUneated by their crystal structure, for example, zeolites. Most molecular sieves in practice today are zeolites. [Pg.1]

Synthetic zeolites and other molecular sieves are important products to a number of companies in the catalysis and adsorption areas and numerous applications, both emerging and well-established, are encouraging the industrial synthesis of the materials. There are currently no more than a few dozen crystalline microporous structures that are widely manufactured for commercial use, in comparison to the hundreds of structures that have been made in the laboratory. See Chapter 2 for details on zeolite structures. The highest volume zeolites manufactured are two of the earliest-discovered materials zeolite A (used extensively as ion exchangers in powdered laundry detergents) and zeolite Y (used in catalytic cracking of gas oil). [Pg.62]

The most commonly employed crystalline materials for liquid adsorptive separations are zeolite-based structured materials. Depending on the specific components and their structural framework, crystalline materials can be zeoUtes (silica, alumina), silicalite (silica) or AlPO-based molecular sieves (alumina, phosphoms oxide). Faujasites (X, Y) and other zeolites (A, ZSM-5, beta, mordenite, etc.) are the most popular materials. This is due to their narrow pore size distribution and the ability to tune or adjust their physicochemical properties, particularly their acidic-basic properties, by the ion exchange of cations, changing the Si02/Al203 ratio and varying the water content. These techniques are described and discussed in Chapter 2. By adjusting the properties almost an infinite number of zeolite materials and desorbent combinations can be studied. [Pg.191]

The acid strength of protons in the crystalline molecular sieve structure plays a key role in of MTO catalysis. The acid sites of silicoalumina-based zeolites... [Pg.524]

Zeolite catalysts play a vital role in modern industrial catalysis. The varied acidity and microporosity properties of this class of inorganic oxides allow them to be applied to a wide variety of commercially important industrial processes. The acid sites of zeolites and other acidic molecular sieves are easier to manipulate than those of other solid acid catalysts by controlling material properties, such as the framework Si/Al ratio or level of cation exchange. The uniform pore size of the crystalline framework provides a consistent environment that improves the selectivity of the acid-catalyzed transformations that form C-C bonds. The zeoHte structure can also inhibit the formation of heavy coke molecules (such as medium-pore MFl in the Cyclar process or MTG process) or the desorption of undesired large by-products (such as small-pore SAPO-34 in MTO). While faujasite, morden-ite, beta and MFl remain the most widely used zeolite structures for industrial applications, the past decade has seen new structures, such as SAPO-34 and MWW, provide improved performance in specific applications. It is clear that the continued search for more active, selective and stable catalysts for industrially important chemical reactions will include the synthesis and application of new zeolite materials. [Pg.528]


See other pages where Molecular sieve zeolites, crystalline structures is mentioned: [Pg.190]    [Pg.17]    [Pg.525]    [Pg.655]    [Pg.244]    [Pg.173]    [Pg.295]    [Pg.317]    [Pg.5]    [Pg.416]    [Pg.855]    [Pg.155]    [Pg.112]    [Pg.378]    [Pg.536]    [Pg.299]    [Pg.3]    [Pg.11]    [Pg.133]    [Pg.27]    [Pg.295]    [Pg.212]    [Pg.119]    [Pg.31]    [Pg.48]    [Pg.210]    [Pg.5]    [Pg.310]    [Pg.8]    [Pg.28]    [Pg.218]    [Pg.644]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Crystalline molecular sieves

Molecular sieve zeolites, crystalline

Molecular sieves

Molecular sieves, zeolitic

Molecular sieving

Molecular zeolite

Structural molecular sieves

Zeolite crystalline

Zeolites structure

© 2024 chempedia.info