Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water thermodynamic data

Ethyleneimine (El) and its two most important derivatives, 2-methyla2iridine [75-55-8] (propyleneimine) (PI) and l-(2-hydroxyethyl)a2iridine [1072-52-2] (HEA) are colodess Hquids. They are miscible ia all proportions with water and the majority of organic solvents. Ethyleneimine is not miscible with concentrated aqueous NaOH solutions (>17% by weight) (24). Ethyleneimine has an odor similar to ammonia and is detectable only at concentrations >2 ppm. The physical properties of ethyleneimine and the derivatives mentioned are given ia Table 1. Thermodynamic data can be found ia the Hterature (32). [Pg.2]

The physical properties of bismuth, summarized ia Table 1, are characterized by a low melting poiat, a high density, and expansion on solidification. Thermochemical and thermodynamic data are summarized ia Table 2. The soHd metal floats on the Hquid metal as ice floating on water. GaUium and antimony are the only other metals that expand on solidification. Bismuth is the most diamagnetic of the metals, and it is a poor electrical conductor. The thermal conductivity of bismuth is lower than that of any other metal except mercury. [Pg.122]

Flame Temperature. The adiabatic flame temperature, or theoretical flame temperature, is the maximum temperature attained by the products when the reaction goes to completion and the heat fiberated during the reaction is used to raise the temperature of the products. Flame temperatures, as a function of the equivalence ratio, are usually calculated from thermodynamic data when a fuel is burned adiabaticaHy with air. To calculate the adiabatic flame temperature (AFT) without dissociation, for lean to stoichiometric mixtures, complete combustion is assumed. This implies that the products of combustion contain only carbon dioxide, water, nitrogen, oxygen, and sulfur dioxide. [Pg.517]

The thermodynamic data pertinent to the corrosion of metals in aqueous media have been systematically assembled in a form that has become known as Pourbaix diagrams (11). The data include the potential and pH dependence of metal, metal oxide, and metal hydroxide reactions and, in some cases, complex ions. The potential and pH dependence of the hydrogen and oxygen reactions are also suppHed because these are the common corrosion cathodic reactions. The Pourbaix diagram for the iron—water system is given as Figure 1. [Pg.275]

It should be emphasised that potential-pH diagrams can also be constructed from experimental E -I curves, where E is the polarised potential and / the current. These diagrams, which are of more direct practical significance than the equilibrium potential-pH equilibrium diagrams constructed from thermodynamic data, show how a metal in a natural environment (e.g. iron in water of given chloride ion concentration) may give rise... [Pg.64]

The Af-HjO diagrams present the equilibria at various pHs and potentials between the metal, metal ions and solid oxides and hydroxides for systems in which the only reactants are metal, water, and hydrogen and hydroxyl ions a situation that is extremely unlikely to prevail in real solutions that usually contain a variety of electrolytes and non-electrolytes. Thus a solution of pH 1 may be prepared from either hydrochloric, sulphuric, nitric or perchloric acids, and in each case a different anion will be introduced into the solution with the consequent possibility of the formation of species other than those predicted in the Af-HjO system. In general, anions that form soluble complexes will tend to extend the zones of corrosion, whereas anions that form insoluble compounds will tend to extend the zone of passivity. However, provided the relevant thermodynamic data are aveiil-able, the effect of these anions can be incorporated into the diagram, and diagrams of the type Af-HjO-A" are available in Cebelcor reports and in the published literature. [Pg.68]

Consider Ni exposed to Oj/HjO vapour mixtures. Possible oxidation products are NiO and Ni (OH)2, but the large molar volume of Ni (OH)2, (24 cm compared with that of Ni, 6.6 cm ) means that the hydroxide is not likely to form as a continuous film. From thermodynamic data, Ni (OH)2 is the stable species in pure water vapour, and in all Oj/HjO vapour mixtures in which O2 is present in measurable quantities, and certainly if the partial pressure of O2 is greater than the dissociation pressure of NiO. But the actual reaction product is determined by kinetics, not by thermodynamics, and because the mechanism of hydroxide formation is more complex than oxide formation, Ni (OH)2 is only expected to form in the later stages of the oxidation at the NiO/gas interface. As it does so, cation vacancies are formed in the oxide according to... [Pg.266]

Projections, linearly independent, 293 Propagation, of polymerization, 158 Propane, hydrate, 10, 33, 43, 46, 47 hydrate thermodynamic data and lattice constants, 8 + iodoform system, 99 Langmuir constant, 47 water-hydrogen sulfide ternary system, 53... [Pg.410]

C14-0105. The most important commercial process for generating hydrogen gas is the water-gas shift reaction CH4(g) + H2 0(g) 00(g) -1-3 H2(g) Use tabulated thermodynamic data to find A G and... [Pg.1040]

Fig. 2.39. Na /K+ atomic ratios of well discharges plotted at measured downhole temperatures. Curve A is the least squares fit of the data points above 80°C. Curve B is another emperical curve (from Truesdell, 1976). Curves C and D show the approximate locations of the low albite-microcline and high albite-sanidine lines derived from thermodynamic data (from Fournier, 1981). Small solid subaerial geothermal water Solid square Okinawa Jade Open square South Mariana Through Solid circle East Pacific Rise 11°N Open circle Mid Atlantic Ridge, TAG. Fig. 2.39. Na /K+ atomic ratios of well discharges plotted at measured downhole temperatures. Curve A is the least squares fit of the data points above 80°C. Curve B is another emperical curve (from Truesdell, 1976). Curves C and D show the approximate locations of the low albite-microcline and high albite-sanidine lines derived from thermodynamic data (from Fournier, 1981). Small solid subaerial geothermal water Solid square Okinawa Jade Open square South Mariana Through Solid circle East Pacific Rise 11°N Open circle Mid Atlantic Ridge, TAG.
Tables 3 and 4 contain values of the log water activity and log sulfuric acid activity in molarity units. These can be obtained at any temperature by using the polynomial coefficients supplied by Zeleznik,45 which are based on all of the preexisting thermodynamic data obtained for this medium. The numbers were converted to the molarity scale using the conversion formula given in Robinson and Stokes 46 Molarity-based water activities are given for HCIO4 in Tables 5 and 6. These are calculated from data obtained at 25°C by Pearce and Nelson,17... Tables 3 and 4 contain values of the log water activity and log sulfuric acid activity in molarity units. These can be obtained at any temperature by using the polynomial coefficients supplied by Zeleznik,45 which are based on all of the preexisting thermodynamic data obtained for this medium. The numbers were converted to the molarity scale using the conversion formula given in Robinson and Stokes 46 Molarity-based water activities are given for HCIO4 in Tables 5 and 6. These are calculated from data obtained at 25°C by Pearce and Nelson,17...
Table 6.2. Thermodynamic data for complexation of alkali metal ions by cryptands in water (Lehn Sauvage, 1975 Kauffmann, Lehn Sauvage, 1976). Table 6.2. Thermodynamic data for complexation of alkali metal ions by cryptands in water (Lehn Sauvage, 1975 Kauffmann, Lehn Sauvage, 1976).
In recent years the FEP method has fallen into disuse. However, as the studies outlined above show, in many cases the results obtained are in good agreement with experimental measurements. In these cases new information may be obtained, which may be difficult or even impossible to measure. Examples of this are the relative ratios of conformers in the histamine system, a detailed breakdown of the tautomers present in the guanine or cystine systems, or the acidity strengths of organic molecules such as ethane in water. In addition to this thermodynamic data, the simulations then also provide detailed information on the solvation of the species of interest. [Pg.137]

Ball, J. W. and D. K. Nordstrom, 1991, User s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological Survey Open File Report 91-183. [Pg.510]

Although the situation with melting in two stages appears a little artificial, we ought to remind ourselves that the phase diagram is made up of thermodynamic data alone. In other words, it is possible to see liquid water at 105 °C, but it would be a metastable phase, i.e. it would not last long ... [Pg.180]

Use the thermodynamic data for water given in Worked Example 5.1. [Pg.198]

Based upon thermodynamic data given in Table I, oxidant strength decreases in the order NijO > Mn02 > MnOOH > CoOOH > FeOOH. Rates of reductive dissolution in natural waters and sediments appear to follow a similar trend. When the reductant flux is increased and conditions turn anoxic, manganese oxides are reduced and dissolved earlier and more quickly than iron oxides (12, 13). No comparable information is available on release of dissolved cobalt and nickel. [Pg.448]

As an introduction to the technical aspects of the conference, the results of some studies conducted by the writer on two relevant subjects are presented below. The first commentary is concerned with the design of sour-water strippers and the effects of thermodynamic data on these designs the second commentary is concerned with the calculation of enthalpies of steam-containing mixtures, essential to the design of coal processing and related plants. [Pg.5]

Despite the importance of mixtures containing steam as a component there is a shortage of thermodynamic data for such systems. At low densities the solubility of water in compressed gases has been used (J, 2 to obtain cross term second virial coefficients Bj2- At high densities the phase boundaries of several water + hydrocarbon systems have been determined (3,4). Data which would be of greatest value, pVT measurements, do not exist. Adsorption on the walls of a pVT apparatus causes such large errors that it has been a difficult task to determine the equation of state of pure steam, particularly at low densities. Flow calorimetric measurements, which are free from adsorption errors, offer an alternative route to thermodynamic information. Flow calorimetric measurements of the isothermal enthalpy-pressure coefficient pressure yield the quantity 4>c = B - TdB/dT where B is the second virial coefficient. From values of obtain values of B without recourse to pVT measurements. [Pg.435]

Water of various degrees of purity is the normal heat transfer fluid employed and a number of important problems with modern boiler water circuits are markedly influenced by solution composition. Most problems arise where solutions can concentrate and the compositions of such solutions can only be obtained by calculation from thermodynamic data. This paper concentrates on the kind of aqueous phase data which are currently most needed. Many of the needs overlap with those of geochemical interest. However, since Barnes (3) has recently reviewed the latter field, specifically geochemical needs will not be discussed. "High temperature" in this paper is generally taken to mean within about 100°C of the critical point of water (374 C), though some important problems which occur at lower temperatures are also considered. [Pg.653]

Illustrations of what can and cannot be done (on the basis of currently available thermodynamic data) towards understanding and solving a variety of water circuit problems are briefly discussed in Section 3. [Pg.656]


See other pages where Water thermodynamic data is mentioned: [Pg.5]    [Pg.215]    [Pg.238]    [Pg.271]    [Pg.5]    [Pg.215]    [Pg.238]    [Pg.271]    [Pg.49]    [Pg.853]    [Pg.133]    [Pg.63]    [Pg.404]    [Pg.403]    [Pg.486]    [Pg.534]    [Pg.560]    [Pg.463]    [Pg.393]    [Pg.21]    [Pg.182]    [Pg.289]    [Pg.374]    [Pg.100]    [Pg.310]    [Pg.653]    [Pg.672]    [Pg.1063]    [Pg.17]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Thermodynamic data

Water thermodynamics

© 2024 chempedia.info