Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular asphaltene

Asphaltenes are obtained in the laboratory by precipitation in normal heptane. Refer to the separation flow diagram in Figure 1.2. They comprise an accumulation of condensed polynuclear aromatic layers linked by saturated chains. A folding of the construction shows the aromatic layers to be in piles, whose cohesion is attributed to -it electrons from double bonds of the benzene ring. These are shiny black solids whose molecular weight can vary from 1000 to 100,000. [Pg.13]

The different cuts obtained are collected their initial and final distillation temperatures are recorded along with their weights and specific gravities. Other physical characteristics are measured for the light fractions octane number, vapor pressure, molecular weight, PONA, weight per cent sulfur, etc., and, for the heavy fractions, the aniline point, specific gravity, viscosity, sulfur content, and asphaltene content, etc. [Pg.331]

Asphalt makes up the residue of the deasphalting operation and concentrates the major portion of the impurities such as metals, sediment, 1 salts and asphaltenes. Asphalt fluidity decreases as the molecular weight of... [Pg.368]

Asphalts characteristically contain very high molecular weight molecular polar species, called asphaltenes, which are soluble in carbon disulfide, pyridine, aromatic hydrocarbons, chlorinated hydrocarbons, and tetrahydrofiiran. [Pg.359]

Colloidal State. The principal outcome of many of the composition studies has been the delineation of the asphalt system as a colloidal system at ambient or normal service conditions. This particular concept was proposed in 1924 and described the system as an oil medium in which the asphaltene fraction was dispersed. The transition from a coUoid to a Newtonian Hquid is dependent on temperature, hardness, shear rate, chemical nature, etc. At normal service temperatures asphalt is viscoelastic, and viscous at higher temperatures. The disperse phase is a micelle composed of the molecular species that make up the asphaltenes and the higher molecular weight aromatic components of the petrolenes or the maltenes (ie, the nonasphaltene components). Complete peptization of the micelle seems probable if the system contains sufficient aromatic constituents, in relation to the concentration of asphaltenes, to allow the asphaltenes to remain in the dispersed phase. [Pg.367]

Black, viscous residuum direc tly from the still at 410 K (390°F) or higher serves as fuel in nearby furnaces or may be cooled and blended to make commercial fuels. Diluted with 5 to 20 percent distillate, the blend is No. 6 fuel oil. With 20 to 50 percent distillate, it becomes No. 4 and No. 5 fuel oils for commercial use, as in schools and apartment houses. Distillate-residual blends also serve as diesel fuel in large stationaiy and marine engines. However, distillates with inadequate solvent power will precipitate asphaltenes and other high-molecular-... [Pg.2363]

The heptane insoluble (ASTM D-3279) method is commonly used to measure the asphaltene content of the feed. Asphaltenes are clusters of polynuclear aromatic sheets, but no one has a clear understanding of their molecular structure. They are insoluble in C3 to paraffins. The amount of asphaltenes that precipitate varies from one solvent to another, so it is important that the reported asphaltene values be identified with the appropriate solvent. Both normal heptane and... [Pg.53]

Paraffin crystalline waxes Apart from asphaltenes, a number of differing molecular weight paraffinic waxes are also present. These progressively crystallize at lowering temperatures (their respective pour points). These waxes increase friction and resistance to flow, so that the viscosity of the fuel is raised. This type of problem is controlled by the use of pour-point depressants (viscosity improvers), which limit the growth of the crystals at their nucleation sites within the fuel. They also have a dispersing effect. [Pg.672]

Petroleum crude oil, gas condensate, and natural gas are generally complex mixtures of various hydrocarbons and nonhydrocarbons with diverse molecular weights. In order to analyze the contents of a petroleum fluid it is a general practice to separate it first into five basic fractions namely, volatiles, saturates, aromatics, resins, and asphaltenes [74, 77]. Volatiles consist of the low-boiling... [Pg.224]

On the contrary, for oil E the quantity of asphaltenes decreases from 8.1 for the initial crude oil to 4-1 for the sample produced at the end of the test (Fig. 12). Moreover, the amounts of resins + asphaltenes decreases whereas the amounts of saturates and aromatics increase (51 4 in the initial oil, 72.4 for a sample recovered at t = 24 h). The analysis by GC shows that each oil fraction is enriched in components with molecular chains ranging from 15 to 30 carbons which don t exist in the initial oil (n-alkanes, aromatics O q-CLq which are less complex than the initial ones, thiophenic compounds C -C ). The elemental... [Pg.422]

This paper reviews the experiences of the oil industry in regard to asphaltene flocculation and presents justifications and a descriptive account for the development of two different models for this phenomenon. In one of the models we consider the asphaltenes to be dissolved in the oil in a true liquid state and dwell upon statistical thermodynamic techniques of multicomponent mixtures to predict their phase behavior. In the other model we consider asphaltenes to exist in oil in a colloidal state, as minute suspended particles, and utilize colloidal science techniques to predict their phase behavior. Experimental work over the last 40 years suggests that asphaltenes possess a wide molecular weight distribution and they may exist in both colloidal and dissolved states in the crude oil. [Pg.444]

In part II of the present report the nature and molecular characteristics of asphaltene and wax deposits from petroleum crudes are discussed. The field experiences with asphaltene and wax deposition and their related problems are discussed in part III. In order to predict the phenomena of asphaltene deposition one has to consider the use of the molecular thermodynamics of fluid phase equilibria and the theory of colloidal suspensions. In part IV of this report predictive approaches of the behavior of reservoir fluids and asphaltene depositions are reviewed from a fundamental point of view. This includes correlation and prediction of the effects of temperature, pressure, composition and flow characteristics of the miscible gas and crude on (i) Onset of asphaltene deposition (ii) Mechanism of asphaltene flocculation. The in situ precipitation and flocculation of asphaltene is expected to be quite different from the controlled laboratory experiments. This is primarily due to the multiphase flow through the reservoir porous media, streaming potential effects in pipes and conduits, and the interactions of the precipitates and the other in situ material presnet. In part V of the present report the conclusions are stated and the requirements for the development of successful predictive models for the asphaltene deposition and flocculation are discussed. [Pg.446]

It has been shown (9) that asphaltenes contain a broad distribution of polarities and molecular weights. According to these studies, the concept of asphaltenes is based on the solubility behavior of high-boiling hydrocarbonaceous materials in benzene and low-molecular weight n-paraffin hydrocarbons. This solubility behavior is a result of physical effects that are caused by a spectrum of chemical properties. Long also... [Pg.446]

Figure 2. Asphaltene structure deduced from microscopic and macroscopic analysis, showing their micro- and macro-molecular bonding. T. F. Yen, 1972, first suggested this type of structure. Figure 2. Asphaltene structure deduced from microscopic and macroscopic analysis, showing their micro- and macro-molecular bonding. T. F. Yen, 1972, first suggested this type of structure.
Figure 3. Molecular weight distributions of asphaltenes before and after flocculation predicted by our continuous mixture model. Figure 3. Molecular weight distributions of asphaltenes before and after flocculation predicted by our continuous mixture model.
In addition to adsorbing at mineral-oil interfaces, asphaltene molecules also adsorb at oil-water interfaces. Strong intermolecular dipole-dipole, hydrogen bonding, electron donor-acceptor and acid-base interactions cause the surface-adsorbed asphaltene molecules to form rigid skins" at oil-water interfaces (41 43). When water droplets are dispersed in an oil which contains asphaltene molecules, molecularly thick, viscous asphaltene films form around the water droplets, inhibit the drainage of intervening oil and sterically stabilize the water-inoil emulsion. [Pg.584]

Figure 3. Molecular weight vs. oxygen content for resins and polar asphaltenes in raw coal liquids ( Z ), regular SRC (O), H-coal (A), SCT-SRC. Figure 3. Molecular weight vs. oxygen content for resins and polar asphaltenes in raw coal liquids ( Z ), regular SRC (O), H-coal (A), SCT-SRC.

See other pages where Molecular asphaltene is mentioned: [Pg.657]    [Pg.61]    [Pg.657]    [Pg.61]    [Pg.43]    [Pg.286]    [Pg.131]    [Pg.172]    [Pg.515]    [Pg.368]    [Pg.368]    [Pg.369]    [Pg.369]    [Pg.369]    [Pg.125]    [Pg.1014]    [Pg.317]    [Pg.323]    [Pg.323]    [Pg.100]    [Pg.924]    [Pg.227]    [Pg.392]    [Pg.396]    [Pg.399]    [Pg.422]    [Pg.448]    [Pg.448]    [Pg.448]    [Pg.451]    [Pg.451]    [Pg.452]    [Pg.316]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Asphaltene

Asphaltenes

© 2024 chempedia.info