Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Moisture levelling

The strands move through large dmm dryers which reduce the moisture content to about 2 or 6%, the difference being whether Hquid or dry resin is to be used. Because a desired moisture level into the press is about 6—7% me, a Hquid resin adds water to the system and requires a lower flake moisture than a dry resin. [Pg.395]

Again, irrespective of the hardware the chemistry is consistent. The partially regenerated fiber from the spinning machine is contaminated with sulfuric acid, 2inc sulfate, sodium sulfate, carbon disulfide, and the numerous incompletely decomposed by-products of the xanthation reactions. The washing and drying systems must yield a pure cellulose fiber, suitably lubricated for the end use, and dried to a moisture level of around 10%. [Pg.348]

Comparisons of the complete heat-transfer model with pilot-scale rotary kiln data are shown iu Figure 5 (21) for moisture levels ranging from 0 to 20 wt %. The tremendous thermal impact of moisture is clearly visible iu the leveling of temperature profiles at 100°C. [Pg.50]

The lead concentrate from rougher flotation ceUs is upgraded by additional flotation steps. The final concentrate is dewatered by settling in thickeners to a moisture content of 50%. Vacuum filtering further decreases the moisture level to 15%. [Pg.34]

The packaging (qv) requirements for shipping and storage of thermoplastic resins depend on the moisture that can be absorbed by the resin and its effect when the material is heated to processing temperatures. Excess moisture may result in undesirable degradation during melt processing and inferior properties. Condensation polymers such as nylons and polyesters need to be specially predried to very low moisture levels (3,4), ie, less than 0.2% for nylon-6,6 and as low as 0.005% for poly(ethylene terephthalate) which hydrolyzes faster. [Pg.136]

Moisture. Moisture is usually determined by a vacuum oven-dry method at 80°C. Moisture levels of more than 0.05% are likely to lead to caking or lumping problems which can make storage and transfer of bulk sugar difficult. The usual standard is 0.03%, which manufacturers can easily meet. Care must be taken to avoid temperature differentials ia storage which cause moisture to migra te and estabUsh pockets of unacceptably high moisture levels. [Pg.30]

Liquid sulfur dioxide discolors iron, copper, and brass at ca 300 ppm moisture and produces light scale at ca 0.1 wt % moisture and serious corrosion at ca 0.2 wt % or higher moisture content. Copper and brass can be used to handle wet sulfur dioxide where some corrosion can be tolerated, or where the moisture level is low. Wooden tanks are widely used for sulfurous acid preparation, handling, and storage. Sulfite pulp digestors are made of steel lined with acid-resistant brick. [Pg.147]

Anhydrous a-dextrose is manufactured by dissolving dextrose monohydrate in water and crysta11i2ing at 60—65°C in a vacuum pan. Evaporative crysta11i2ation is necessary to avoid color formation at high temperatures and hydrate formation at low temperatures. The product is separated by centrifugation, washed, dried to a moisture level of ca 0.1%, and marketed as a very pure grade of sugar for special appHcations. [Pg.291]

Active Dry Yeast (ADY). The production of active dry yeast is very similar to the production of compressed yeast. However, a different strain of yeast is used and the nitrogen content is reduced to 7% of soHds compared with 8—9% for compressed yeast. The press cake made with the active dry yeast strain is extmded through a perforated plate in the form of thin strands with a diameter of 2—3 mm and a length of 3—10 mm. The strands are dried on endless belts of steel mesh in drying chambers (a continuous process) or in roto-louvre dryers (a batch process), with the temperature kept below 40°C. Drying time in drying chambers is 3—4 h and in roto-louvre dryers is 6 h or more. The final moisture level attained is 7.5—8%. [Pg.389]

Instant Active Dry Yeast. Instant ADY (lADY or HADY) production is similar to ADY production but requires a different strain of yeast. After pressing, the yeast is extmded into noodles 0.2—0.5 mm in diameter and 1—2 cm long and deposited on a metal screen or perforated plate in a fluid-bed air dryer. Drying time is shorter than with ADY, about 1—2 hours in practice, with a final moisture level of 4—6%. Instant active dry yeast does not require separate rehydration. It is always packaged in a protective atmosphere or under vacuum. On an equivalent soHds basis, the activity of lADY is greater than that of regular ADY, but stiU less than that of compressed yeast. [Pg.389]

Static electrification may not be a property of the basic stmcture, but of a new surface formed by a monomolecular layer of water (82). All textile fibers at a relative humidity, at which a continuous monomolecular layer is formed, actually do have the same charge density. This is attributed to the absence of ionic transport which caimot occur in a monomolecular layer. At higher moisture levels than required to form a monomolecular layer, ionic conductivity can occur because of excess water molecules and by hydration of the ions. At very low moisture-regain levels, all materials acquire the same charge (83). [Pg.292]

In this process the addition of water vapor to the sweep stream can be controlled so that the water activity of the gas phase equals that of the beverage. When this occurs, there is no transport of water across the membrane. The water content of both the beverage feed and the sweep stream is kept constant. These conditions must be maintained for optimum alcohol reduction. The pervaporation system controls the feed, membrane, airstream moisture level, and ethanol recovery functions. An operational system has been developed (13). [Pg.87]

A humidification subsystem controls the temperature, flow rate, and relative humidity of the sweep stream. Air and water can be fed to a Hquid-gas packed contactor to produce the desired moisture level ia the vapor stream. The saturation temperature controls the water loading of the air which can be heated to give exactly the desired relative humidity. [Pg.87]

Procedures for determining the ash content and moisture level, solution preparation, and viscosity measurement techniques are given in the manufacturer s hterature (50). [Pg.280]


See other pages where Moisture levelling is mentioned: [Pg.30]    [Pg.358]    [Pg.420]    [Pg.205]    [Pg.401]    [Pg.51]    [Pg.280]    [Pg.382]    [Pg.201]    [Pg.204]    [Pg.525]    [Pg.415]    [Pg.415]    [Pg.275]    [Pg.275]    [Pg.276]    [Pg.233]    [Pg.234]    [Pg.526]    [Pg.183]    [Pg.296]    [Pg.453]    [Pg.341]    [Pg.342]    [Pg.317]    [Pg.510]    [Pg.21]    [Pg.21]    [Pg.257]    [Pg.1175]    [Pg.1214]    [Pg.1735]    [Pg.1907]    [Pg.630]    [Pg.132]    [Pg.555]    [Pg.185]   
See also in sourсe #XX -- [ Pg.309 , Pg.335 ]




SEARCH



Biodegradation moisture levels

Equilibrium moisture level

Excipient moisture level

Moisture content target level

Moisture level

Moisture level

Moisture sensitivity level

© 2024 chempedia.info