Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Models solution systems model

Es-Safi, N.E. et al.. Studies on the acetaldehyde-induced condensation of (—)-epicatechin and malvidin 3-O-glucoside in a model solution system. J. Agric. Food Chem. 47, 2096, 1999. [Pg.308]

Es-Safl, N. Fulcrand, H. Cheynier, V. Moutounet, M. Hmamouchi, M. Essassi, E. M. Kinetic studies of acetaldehyde-induced condensation of flavan-3-ols and malvidin-3-glucoside in model solution systems. JIEP 96 1996, 279-280. [Pg.87]

Reactions of anthocyanins and flavanols in the presence of aldehydes, namely acetaldehyde, glyoxylic acid, furfural, and hydroxymethylfurfural, have been studied in wine like model solution systems, enabling to demonstrate the formation of purple and yellow pigments, as discussed below. Identification of the formed compounds was achieved on the basis of their UV-visible, ID and 2D NMR and mass spectra 38-42 ... [Pg.146]

The reactions described in this work were conducted in model solution system and obviously do not match what really occurs during storage and ageing of red wine which has a more complex composition. Nevertheless, it is expected that such experiments may at least enable elucidation of the simpler polymerization products such as those slowly formed during maturation and storage. [Pg.157]

Bromothymol blue, Synthetic methylene blue (model solutions system) Benzene... [Pg.350]

Negative Marangoni numbers. Very interesting results for the solute system model r = const, Ma < 0 were obtained.As it could be seen from Figure 11 there are three... [Pg.218]

Bensasson R V, Bienvenue E, Dellinger M, Leach S and Seta P 1994 Cgg in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation J. Phys. Chem. 98 3492-5000... [Pg.2433]

Ire boundary element method of Kashin is similar in spirit to the polarisable continuum model, lut the surface of the cavity is taken to be the molecular surface of the solute [Kashin and lamboodiri 1987 Kashin 1990]. This cavity surface is divided into small boimdary elements, he solute is modelled as a set of atoms with point polarisabilities. The electric field induces 1 dipole proportional to its polarisability. The electric field at an atom has contributions from lipoles on other atoms in the molecule, from polarisation charges on the boundary, and where appropriate) from the charges of electrolytes in the solution. The charge density is issumed to be constant within each boundary element but is not reduced to a single )oint as in the PCM model. A set of linear equations can be set up to describe the electrostatic nteractions within the system. The solutions to these equations give the boundary element harge distribution and the induced dipoles, from which thermodynamic quantities can be letermined. [Pg.614]

Transport Models. Many mechanistic and mathematical models have been proposed to describe reverse osmosis membranes. Some of these descriptions rely on relatively simple concepts others are far more complex and require sophisticated solution techniques. Models that adequately describe the performance of RO membranes are important to the design of RO processes. Models that predict separation characteristics also minimize the number of experiments that must be performed to describe a particular system. Excellent reviews of membrane transport models and mechanisms are available (9,14,25-29). [Pg.146]

Equation 7 shows that as AP — oo, P — 1. The principal advantage of the solution—diffusion (SD) model is that only two parameters are needed to characterize the membrane system. As a result, this model has been widely appHed to both inorganic salt and organic solute systems. However, it has been indicated (26) that the SD model is limited to membranes having low water content. Also, for many RO membranes and solutes, particularly organics, the SD model does not adequately describe water or solute flux (27). Possible causes for these deviations include imperfections in the membrane barrier layer, pore flow (convection effects), and solute—solvent—membrane interactions. [Pg.147]

Although modeling of supercritical phase behavior can sometimes be done using relatively simple thermodynamics, this is not the norm. Especially in the region of the critical point, extreme nonideahties occur and high compressibilities must be addressed. Several review papers and books discuss modeling of systems comprised of supercritical fluids and soHd orHquid solutes (rl,i4—r7,r9,i49,r50). [Pg.224]

Kamlet-Taft Linear Solvation Energy Relationships. Most recent works on LSERs are based on a powerfiil predictive model, known as the Kamlet-Taft model (257), which has provided a framework for numerous studies into specific molecular thermodynamic properties of solvent—solute systems. This model is based on an equation having three conceptually expHcit terms (258). [Pg.254]

Simulation of Dynamic Models Linear dynamic models are particularly useful for analyzing control-system behavior. The insight gained through linear analysis is invaluable. However, accurate dynamic process models can involve large sets of nonlinear equations. Analytical solution of these models is not possible. Thus, in these cases, one must turn to simulation approaches to study process dynamics and the effect of process control. Equation (8-3) will be used to illustrate the simulation of nonhnear processes. If dcjdi on the left-hand side of Eq. (8-3) is replaced with its finite difference approximation, one gets ... [Pg.720]

The dominant mechanism of purification for column ciystallization of sohd-solution systems is reciystallization. The rate of mass transfer resulting from reciystallization is related to the concentrations of the solid phase and free hquid which are in intimate contac t. A model based on height-of-transfer-unit (HTU) concepts representing the composition profQe in the purification sec tion for the high-melting component of a binaiy solid-solution system has been reported by Powers et al. (in Zief and Wilcox, op. cit., p. 363) for total-reflux operation. Typical data for the purification of a solid-solution system, azobenzene-stilbene, are shown in Fig. 22-10. The column ciystallizer was operated... [Pg.1993]

A variety of equations-of-state have been applied to supercritical fluids, ranging from simple cubic equations like the Peng-Robinson equation-of-state to the Statistical Associating Fluid Theoiy. All are able to model nonpolar systems fairly successfully, but most are increasingly chaUenged as the polarity of the components increases. The key is to calculate the solute-fluid molecular interaction parameter from the pure-component properties. Often the standard approach (i.e. corresponding states based on critical properties) is of limited accuracy due to the vastly different critical temperatures of the solutes (if known) and the solvents other properties of the solute... [Pg.2002]

Computational fluid dynamics (CFD) is the numerical analysis of systems involving transport processes and solution by computer simulation. An early application of CFD (FLUENT) to predict flow within cooling crystallizers was made by Brown and Boysan (1987). Elementary equations that describe the conservation of mass, momentum and energy for fluid flow or heat transfer are solved for a number of sub regions of the flow field (Versteeg and Malalase-kera, 1995). Various commercial concerns provide ready-to-use CFD codes to perform this task and usually offer a choice of solution methods, model equations (for example turbulence models of turbulent flow) and visualization tools, as reviewed by Zauner (1999) below. [Pg.47]

The electrolyte solution is modelled as a two-component, electroneutral system of point ions with charges ez, = ezL = ez. The density of the fluid is (p+ = pL = p /2). The fluid-fluid and fluid-matrix Coulomb interactions are... [Pg.338]

The reversible aggregation of monomers into linear polymers exhibits critical phenomena which can be described by the 0 hmit of the -vector model of magnetism [13,14]. Unlike mean field models, the -vector model allows for fluctuations of the order parameter, the dimension n of which depends on the nature of the polymer system. (For linear chains 0, whereas for ring polymers = 1.) In order to study equilibrium polymers in solutions, one should model the system using the dilute 0 magnet model [14] however, a theoretical solution presently exists only within the mean field approximation (MFA), where it corresponds to the Flory theory of polymer solutions [16]. [Pg.510]

One femily of models for systems in non-aqueous solution are referred to as Self-Consistent Reaction Field (SCRF) methods. These methods all model the solvent as a continuum of uniform dielectric constant e the reaction field. The solute is placed into a cavity within the solvent. SCRF approachs differ in how they define the cavity and the reaction field. Several are illustrated below. [Pg.237]

Goto, T., and Fukatsu, H. (1969). Cypridina bioluminescence VII. Chemiluminescence in micelle solutions — A model system for Cypridina bioluminescence. Tetrahedron Lett., pp. 4299-4302. [Pg.397]


See other pages where Models solution systems model is mentioned: [Pg.925]    [Pg.314]    [Pg.36]    [Pg.145]    [Pg.218]    [Pg.2364]    [Pg.2367]    [Pg.632]    [Pg.285]    [Pg.156]    [Pg.228]    [Pg.474]    [Pg.5]    [Pg.372]   
See also in sourсe #XX -- [ Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 ]




SEARCH



Model solutions

Solutal model

Solute model

Solution systems

Solution systems model

Solution systems model solute

© 2024 chempedia.info