Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Miscibility homogeneous

Thus most of the time one obtains phase-separated systems in which the macromolecules of component A are not at all or only to a limited extent miscible with the macromolecules of component B, i.e., polymer A is incompatible or only partially compatible with polymer B. The synonymical terms polymer blend , polymer alloy , or polymer mixture denote miscible (homogeneous) as well as immiscible (heterogeneous) systems consisting of two or more different polymers. [Pg.363]

Ternary Blends. Discussion of polymer blends is typically limited to those containing only two different components. Of course, inclusion of additional components may be useful in formulating commercial products. The recent Hterature describes the theoretical treatment and experimental studies of the phase behavior of ternary blends (10,21). The most commonly studied ternary mixtures are those where two of the binary pairs are miscible, but the third pair is not. There are limited regions where such ternary mixtures exhibit one phase. A few cases have been examined where all three binary pairs are miscible however, theoretically this does not always ensure homogeneous ternary mixtures (10,21). [Pg.409]

Preparation of Emulsions. An emulsion is a system ia which one Hquid is coUoidaHy dispersed ia another (see Emulsions). The general method for preparing an oil-ia-water emulsion is to combine the oil with a compatible fatty acid, such as an oleic, stearic, or rosia acid, and separately mix a proportionate quantity of an alkah, such as potassium hydroxide, with the water. The alkah solution should then be rapidly stirred to develop as much shear as possible while the oil phase is added. Use of a homogenizer to force the resulting emulsion through a fine orifice under pressure further reduces its oil particle size. Liquid oleic acid is a convenient fatty acid to use ia emulsions, as it is readily miscible with most oils. [Pg.258]

Poly(ethyl methacrylate) (PEMA) yields truly compatible blends with poly(vinyl acetate) up to 20% PEMA concentration (133). Synergistic improvement in material properties was observed. Poly(ethylene oxide) forms compatible homogeneous blends with poly(vinyl acetate) (134). The T of the blends and the crystaUizabiUty of the PEO depend on the composition. The miscibility window of poly(vinyl acetate) and its copolymers with alkyl acrylates can be broadened through the incorporation of acryUc acid as a third component (135). A description of compatible and incompatible blends of poly(vinyl acetate) and other copolymers has been compiled (136). Blends of poly(vinyl acetate) copolymers with urethanes can provide improved heat resistance to the product providing reduced creep rates in adhesives used for vinyl laminating (137). [Pg.467]

One principal use of cyclohexanol has been in the manufacture of esters for use as plasticizers (qv), ie, cyclohexyl and dicyclohexyl phthalates. In the finishes industry, cyclohexanol is used as a solvent for lacquers, shellacs, and varnishes. Its low volatiUty helps to improve secondary flow and to prevent blushing. It also improves the miscibility of cellulose nitrate and resin solutions and helps maintain homogeneity during drying of lacquers. Reaction of cyclohexanol with ammonia produces cyclohexylamine [108-91-8], a corrosion inhibitor. Cyclohexanol is used as a stabilizer and homogenizer for soaps and synthetic detergent emulsions. It is used also by the textile industry as a dye solvent and kier-boiling assistant (see Dye carriers). [Pg.426]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]

When water-miscible ionic liquids are used as solvents, and when the products are partly or totally soluble in these ionic liquids, the addition of polar solvents, such as water, in a separation step after the reaction can make the ionic liquid more hydrophilic and facilitate the separation of the products from the ionic liquid/water mixture (Table 5.3-2, case e). This concept has been developed by Union Carbide for the hydroformylation of higher alkenes catalyzed by Rh-sulfonated phosphine ligand in the N-methylpyrrolidone (NMP)/water system. Thanks to the presence of NMP, the reaction is performed in one homogeneous phase. After the reaction. [Pg.265]


See other pages where Miscibility homogeneous is mentioned: [Pg.29]    [Pg.135]    [Pg.176]    [Pg.177]    [Pg.352]    [Pg.357]    [Pg.369]    [Pg.166]    [Pg.32]    [Pg.158]    [Pg.136]    [Pg.143]    [Pg.526]    [Pg.322]    [Pg.332]    [Pg.337]    [Pg.29]    [Pg.135]    [Pg.176]    [Pg.177]    [Pg.352]    [Pg.357]    [Pg.369]    [Pg.166]    [Pg.32]    [Pg.158]    [Pg.136]    [Pg.143]    [Pg.526]    [Pg.322]    [Pg.332]    [Pg.337]    [Pg.302]    [Pg.2361]    [Pg.17]    [Pg.260]    [Pg.288]    [Pg.52]    [Pg.408]    [Pg.408]    [Pg.409]    [Pg.409]    [Pg.411]    [Pg.132]    [Pg.180]    [Pg.182]    [Pg.194]    [Pg.1294]    [Pg.2092]    [Pg.77]    [Pg.453]    [Pg.435]    [Pg.466]    [Pg.102]    [Pg.260]    [Pg.274]    [Pg.333]    [Pg.633]    [Pg.654]    [Pg.136]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



© 2024 chempedia.info