Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microwave tools

Another approach is to coat the cutting tool material with a carbide former, such as titanium or siUcon or their respective carbides by CVD and deposit diamond on top of it. The carbide layer may serve as an iaterface between diamond and the cemented carbide, thus promoting good bonding. Yet another method to obtain adherent diamond coatings is laser-iaduced microwave CVD. By ablating the surface of the substrate with a laser (typically, ArF excimer laser) and coating this surface with diamond by microwave CVD, it is possible to improve the adhesion between the tool and the substrate. Partial success has been achieved ia this direction by many of these techniques. [Pg.219]

Polycarbonates have proved attractive in domestic appliances. Examples include food processor bowls, coffeemaker cold water reservoirs, vacuum cleaner housings, food mixer housings, power tool housings, hair drier and electric razor housings, and microwave cookware. [Pg.577]

Oscillometry 527 as analytical tool, 528 titrations (H.F.), 527 Osmium tetroxide catalyst 381 Ostwald s dilution law 31 Ovens electric, 97 microwave, 97 Overpotential 506 Overvoltage see Overpotential Oxalates, D. of as calcium carbonate via oxalate, (g) 484... [Pg.869]

During the past decade, MALDI-TOF MS has proven to be an effective tool for the analysis of oligo- and polymeric mannoglucans (for extensive reviews see [222,223]). SEC/MALDI mass spectrometry was employed in the analysis of hemicelluloses isolated by microwave heat-fractionation from spruce and aspen wood [94]. These methods allowed the separation and characterization of the oligo- and polysaccharide fractions derived from the xylan and mannan components of both woods [224]. [Pg.29]

Finally, the introduction of focused microwave instruments further enabled to speed up the synthesis of libraries, by reducing the actual time needed for reaction [28-34]. The combination of using dedicated microwave instruments and sohd or solution phase tagging subsequently became a very powerful tool for PASP and SPOS apphcations [25,26,33-51]. [Pg.131]

The intensity of the absorption of microwave energy is a measure the abundance of that isotope. The potency of the NMR spectroscopy is not only its ability to quantify the concentration of an isotope, but to check the enviromnent into which an isotope is embedded. This is possible because the magnetic resonance and thus the absorption frequency prove to be sensitive to the spins of neighboring atoms and to structural features of the probe. Therefore, NMR spectroscopy is more a tool for scientific structural analyses than for daily food (colorant) inspection. For a detailed study of the NMR techniques used in food science we recommend books by Macomber and Pochapsky. - ... [Pg.9]

The most important advantages of MIP-AES as an analytical technique for GC detection of metals and metalloids are indicated in Table 7.32. MIP-AES is one of the most powerful analytical tools for selective detection in GC, and is potentially quantitative [331]. Elemental figures of merit for GC-MIP detection have been reported [332]. Microwave-induced plasmas have found much greater use in GC than in HPLC interfacing. Reviews on empirical and molecular formula determination by GC-MIP have been published [332,333]. [Pg.472]

AI methods may be used in various ways. The models may be used as a standalone application, e.g., in recent work on the design of microwave absorbers using particle swarm optimization (PSO).6 Alternatively, a computational tool, such as a finite element analysis or a quantum mechanical calculation, may be combined with an AI technique, such as an evolutionary algorithm. [Pg.6]

In general, all observed intemuclear distances are vibrationally averaged parameters. Due to anharmonicity, the average values will change from one vibrational state to the next and, in a molecular ensemble distributed over several states, they are temperature dependent. All these aspects dictate the need to make statistical definitions of various conceivable, different averages, or structure types. In addition, since the two main tools for quantitative structure determination in the vapor phase—gas electron diffraction and microwave spectroscopy—interact with molecular ensembles in different ways, certain operational definitions are also needed for a precise understanding of experimental structures. [Pg.133]

Similar operational definitions have to be taken into account for every experimental tool of structural chemistry to define the meaning of the observables that it provides6. In microwave spectroscopy, for example, structural information is obtained from the rotational constants... [Pg.138]

NMR using liquid crystal solvents is now a well-established tool for the investigation of molecular structure. Selenophene was studied in a liquid crystal composed of sodium sulfate, decanol, deuterium oxide, and sodium decylsulfate.12 The refined direct couplings were obtained iteratively with the help of a computer. The ratios of the interproton distances were calculated from the direct couplings and found to be in good agreement with corresponding values calculated from the microwave data. [Pg.129]

The glass plate was exposed to microwave irradiation, eluted, and viewed by standard TLC visualization procedures to assess the results of the reaction. In this particular example, the synthesis of an arylpiperazine library (Scheme 4.25) was described, but the simplicity and general utility of the approach for the rapid screening of solvent-free microwave reactions may make this a powerful screening and reaction optimization tool. The synthesized compounds were later screened for their antimicrobial activity without their removal from the TLC plate utilizing bioautogra-phical methods [84],... [Pg.77]

A recent development in this context is the Liberty system introduced by CEM in 2004 (see Fig. 3.25). This instrument is an automated microwave peptide synthesizer, equipped with special vessels, applicable for the unattended synthesis of up to 12 peptides employing 25 different amino acids. This tool offers the first commercially available dedicated reaction vessels for carrying out microwave-assisted solid-phase peptide synthesis. At the time of writing, no published work accomplished with this instrument was available. [Pg.295]

In conclusion, is it necessary to obtain a microwave athermal effect to justify microwave chemistry Obviously not - it is not necessary to present microwaves effects in a scientific disguise. There are many examples in which microwave heating results in specific time-temperature histories and gradients which cannot be achieved by other means especially for solid materials. Hence, rather than claiming nonther-mal effects it is better to claim a means or a tool which induces a specific thermal history. [Pg.19]

These examples of the use of microwave irradiation in the synthesis of heterocyclic compounds show the great versatility of this technique, which can be used under a variety of experimental conditions. Even when there is no improvement of yields, or rates, or specificity, the technique is worthwhile owing to its simplicity. It can be foreseen that microwave ovens are going to be among the basic equipment of research laboratories in the near future. Combinatorial and parallel synthesis under the action of microwave irradiation is becoming a powerful tool for discovery of new molecules and should develop very rapidly. [Pg.289]

The hetero-Diels-Alder reaction is one of the most important methods of synthesis of heterocycles, yet as a potentially powerful synthetic tool it has found relatively little general use. Microwave irradiation has been used to improve reactions involving heterodienophiles and heterodienes of low reactivity. [Pg.312]

Microwave irradiation of catalysts before their use in chemical reactions has been found to be a new promising tool for catalyst activation. Microwave irradiation has been found to modify not only the size and distribution of metal particles but probably also their shape and, consequently, the nature of their active sites. These phenomena might have a significant effect on the activity and selectivity of catalysts, as found in the isomerization of 2-methylpentene on a Pt catalyst [2],... [Pg.350]

The microwave photochemical reactor is an essential tool for experimental work in this field. Such equipment enables simultaneous irradiation of the sample with both MW and UV/VIS radiation. The idea of using an electrodeless lamp (EDL), in which the discharge is powered by the MW field, for photochemistry was bom half a century ago [46, 68]. The lamp was originally proposed as a source of UV radiation only,... [Pg.467]


See other pages where Microwave tools is mentioned: [Pg.343]    [Pg.346]    [Pg.216]    [Pg.217]    [Pg.219]    [Pg.219]    [Pg.667]    [Pg.25]    [Pg.110]    [Pg.274]    [Pg.292]    [Pg.301]    [Pg.9]    [Pg.248]    [Pg.301]    [Pg.603]    [Pg.78]    [Pg.278]    [Pg.181]    [Pg.434]    [Pg.243]    [Pg.2]    [Pg.22]    [Pg.91]    [Pg.101]    [Pg.353]    [Pg.393]    [Pg.20]    [Pg.40]    [Pg.430]    [Pg.219]    [Pg.148]    [Pg.23]   
See also in sourсe #XX -- [ Pg.906 ]




SEARCH



Microwave diagnostic tool

Tools for Microwave SPPS

© 2024 chempedia.info