Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative structure-

Masson F and Rabalais J W 1991 Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt 110. I. Quantitative structure study of the clean (1 x 2) surface Surf. Sc/. 253 245-57... [Pg.1826]

All the techniques described above can be used to calculate molecular structures and energies. Which other properties are important for chemoinformatics Most applications have used semi-empirical theory to calculate properties or descriptors, but ab-initio and DFT are equally applicable. In the following, we describe some typical properties and descriptors that have been used in quantitative structure-activity (QSAR) and structure-property (QSPR) relationships. [Pg.390]

A challenging task in material science as well as in pharmaceutical research is to custom tailor a compound s properties. George S. Hammond stated that the most fundamental and lasting objective of synthesis is not production of new compounds, but production of properties (Norris Award Lecture, 1968). The molecular structure of an organic or inorganic compound determines its properties. Nevertheless, methods for the direct prediction of a compound s properties based on its molecular structure are usually not available (Figure 8-1). Therefore, the establishment of Quantitative Structure-Property Relationships (QSPRs) and Quantitative Structure-Activity Relationships (QSARs) uses an indirect approach in order to tackle this problem. In the first step, numerical descriptors encoding information about the molecular structure are calculated for a set of compounds. Secondly, statistical and artificial neural network models are used to predict the property or activity of interest based on these descriptors or a suitable subset. [Pg.401]

Besides the aforementioned descriptors, grid-based methods are frequently used in the field of QSAR quantitative structure-activity relationships) [50]. A molecule is placed in a box and for an orthogonal grid of points the interaction energy values between this molecule and another small molecule, such as water, are calculated. The grid map thus obtained characterizes the molecular shape, charge distribution, and hydrophobicity. [Pg.428]

Two approaches to quantify/fQ, i.e., to establish a quantitative relationship between the structural features of a compoimd and its properties, are described in this section quantitative structure-property relationships (QSPR) and linear free energy relationships (LFER) cf. Section 3.4.2.2). The LFER approach is important for historical reasons because it contributed the first attempt to predict the property of a compound from an analysis of its structure. LFERs can be established only for congeneric series of compounds, i.e., sets of compounds that share the same skeleton and only have variations in the substituents attached to this skeleton. As examples of a QSPR approach, currently available methods for the prediction of the octanol/water partition coefficient, log P, and of aqueous solubility, log S, of organic compoimds are described in Section 10.1.4 and Section 10.15, respectively. [Pg.488]

Furthermore, QSPR models for the prediction of free-energy based properties that are based on multilinear regression analysis are often referred to as LFER models, especially, in the wide field of quantitative structure-activity relationships (QSAR). [Pg.489]

The fundamental assumption of SAR and QSAR (Structure-Activity Relationships and Quantitative Structure-Activity Relationships) is that the activity of a compound is related to its structural and/or physicochemical properties. In a classic article Corwin Hansch formulated Eq. (15) as a linear frcc-cncrgy related model for the biological activity (e.g.. toxicity) of a group of congeneric chemicals [37, in which the inverse of C, the concentration effect of the toxicant, is related to a hy-drophobidty term, FI, an electronic term, a (the Hammett substituent constant). Stcric terms can be added to this equation (typically Taft s steric parameter, E,). [Pg.505]

P. C. Juts, Quantitative structure-property relationships, in Encyclopedia of Computational Chemistry, Volume 4, P. v. R. Schleyer, N. L. Allinger, T. Qaik, J. Gasteiger, P. A. KoUman, H. F. Schaefer III and P.R. Schreiner (Eds.), John Wiley Sons, Chichester, 1998, pp. 2320-2330. [Pg.512]

Neural networks have been proposed as an alternative way to generate quantitative structure-activity relationships [Andrea and Kalayeh 1991]. A commonly used type of neural net contains layers of units with connections between all pairs of units in adjacent layers (Figure 12.38). Each unit is in a state represented by a real value between 0 and 1. The state of a unit is determined by the states of the units in the previous layer to which it is connected and the strengths of the weights on these connections. A neural net must first be trained to perform the desired task. To do this, the network is presented with a... [Pg.719]

T A and H Kalayeh 1991. Applications of Neural Networks in Quantitative Structure-Activity ationships of Dihydrofolate Reductase Inhibitors, journal of Medicinal Chemistry 34 2824-2836. ik M and R C Glen 1992. Applications of Rule-induction in the Derivation of Quantitative icture-Activity Relationships. Journal of Computer-Aided Molecular Design 6 349-383. [Pg.736]

Dunn W J III, S Wold, U Edlund, S Hellberg and J Gasteiger 1984. Multivariate Structure-Activib Relationships Between Data from a Battery of Biological Tests and an Ensemble of Structur Descriptors The PLS Method. Quantitative Structure-Activity Relationships 3 131-137. [Pg.737]

K and G M Crippen 1986. Atomic Physicochemical Parameters for Three-dimensional Struc-directed Quantitative Structure-Activity Relationships. I. Partition Coefficients as a Measure ydrophobicity. Journal of Computational Chemistry 7 565-577. [Pg.738]

E Novellino and Y C Martin 1997 Approaches to Three-dimensional Quantitative Structure-vity Relationships. In Lipkowitz K B and D B Boyd (Editors) Reviews in Computational Chemistry ime 11. New York, VCH Publishers, pp, 183-240,... [Pg.738]

Z, ] McClarin, T Klein and R Langridge 1985. A Quantitative Structure-Activity Relationship and ecular Graphics Study of Carbonic Anhydrase Inhibitors. Molecular Pharmacology 27 493-498. [Pg.738]

Holiday J D, S R Ranade and P Willett 1995. A Fast Algorithm For Selecting Sets Of Dissimilar Molecule From Large Chemical Databases. Quantitative Structure-Activity Relationships 14 501-506. [Pg.739]

Hudson B D, R M Hyde, E Rahr, J Wood and J Osman 1996. Parameter Based Methods for Compoun Selection from Chemical Databases. Quantitative Structure-Activity Relationships 15 285-289. [Pg.739]

Pastor M, G Cruciani and S dementi 1997. Smart Region Definition A New Way to Improve tl Predictive Ability and Interpretability of Three-Dimensional Quantitative Structure-Activi Relationships. Journal of Medicinal Chemistry 40 1455-1464. [Pg.741]

Poso A, R Juvonen and J Gynther 1995. Comparative Molecular Field Analysis of Compounds wii CYP2A5 Binding Affinity. Quantitative Structure-Activity Relationships 14 507-511. [Pg.741]

Rogers D and A J Hopfinger 1994. Application of Genetic Function Approximation to Quantitatir Structure-Activity Relationships and Quantitative Structure-Property Relationships. Journal Chemical Information and Computer Science 34 854-866. [Pg.741]

Some properties, such as the molecular size, can be computed directly from the molecular geometry. This is particularly important, because these properties are accessible from molecular mechanics calculations. Many descriptors for quantitative structure activity or property relationship calculations can be computed from the geometry only. [Pg.107]

When the property being described is a physical property, such as the boiling point, this is referred to as a quantitative structure-property relationship (QSPR). When the property being described is a type of biological activity, such as drug activity, this is referred to as a quantitative structure-activity relationship (QSAR). Our discussion will first address QSPR. All the points covered in the QSPR section are also applicable to QSAR, which is discussed next. [Pg.243]

Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology W. Karcher, J. Devillers, Eds., Kluwer, Dordrecht (1990). [Pg.251]

PW91 (Perdew, Wang 1991) a gradient corrected DFT method QCI (quadratic conhguration interaction) a correlated ah initio method QMC (quantum Monte Carlo) an explicitly correlated ah initio method QM/MM a technique in which orbital-based calculations and molecular mechanics calculations are combined into one calculation QSAR (quantitative structure-activity relationship) a technique for computing chemical properties, particularly as applied to biological activity QSPR (quantitative structure-property relationship) a technique for computing chemical properties... [Pg.367]

Quantitative Structure—Activity Relationships (QSAR). Quantitative Stmcture—Activity Relationships (QSAR) is the name given to a broad spectmm of modeling methods which attempt to relate the biological activities of molecules to specific stmctural features, and do so in a quantitative manner (see Enzyme INHIBITORS). The method has been extensively appHed. The concepts involved in QSAR studies and a brief overview of the methodology and appHcations are given here. [Pg.168]

Quantitative Structure—Activity Relationships. Many quantitative stmcture—activity relationship (QSAR) studies of progestins have appeared in the Hterature and an extensive review of this work is available (174). QSAR studies attempt to correlate electronic, steric, and/or hydrophobic properties to progestational activity or receptor binding affinity. A review focusing on the problems associated with QSAR of steroids has been pubUshed (175). [Pg.220]


See other pages where Quantitative structure- is mentioned: [Pg.10]    [Pg.474]    [Pg.489]    [Pg.516]    [Pg.11]    [Pg.685]    [Pg.696]    [Pg.711]    [Pg.711]    [Pg.108]    [Pg.208]    [Pg.834]    [Pg.834]    [Pg.834]    [Pg.834]    [Pg.168]    [Pg.39]   
See also in sourсe #XX -- [ Pg.365 , Pg.366 , Pg.367 , Pg.368 , Pg.369 , Pg.370 , Pg.371 , Pg.372 , Pg.373 , Pg.374 , Pg.375 , Pg.376 , Pg.377 , Pg.378 , Pg.379 , Pg.380 , Pg.381 ]




SEARCH



© 2024 chempedia.info