Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microfiltration water treatment membrane applications

Water reclamation, the treatment of wastewater to meet the water quality standards of various applications economically, is becoming increasingly important in view of the increasing world population and scarcity of fresh water sources. The major technology used for water reclamation is membrane technology. This entry gives an overview of the major membrane types used for water reclamation reverse osmosis, nanofiltration, ultrafiltration, microfiltration, and liquid membranes. Applications of these membranes in municipal and industrial wastewater reclamation have been described. [Pg.3225]

Pretreatment For most membrane applications, particularly for RO and NF, pretreatment of the feed is essential. If pretreatment is inadequate, success will be transient. For most applications, pretreatment is location specific. Well water is easier to treat than surface water and that is particularly true for sea wells. A reducing (anaerobic) environment is preferred. If heavy metals are present in the feed even in small amounts, they may catalyze membrane degradation. If surface sources are treated, chlorination followed by thorough dechlorination is required for high-performance membranes [Riley in Baker et al., op. cit., p. 5-29]. It is normal to adjust pH and add antisealants to prevent deposition of carbonates and siillates on the membrane. Iron can be a major problem, and equipment selection to avoid iron contamination is required. Freshly precipitated iron oxide fouls membranes and reqiiires an expensive cleaning procedure to remove. Humic acid is another foulant, and if it is present, conventional flocculation and filtration are normally used to remove it. The same treatment is appropriate for other colloidal materials. Ultrafiltration or microfiltration are excellent pretreatments, but in general they are... [Pg.2037]

In the last few years, a third type of microfiltration operating system called semi-dead-end filtration has emerged. In these systems, the membrane unit is operated as a dead-end filter until the pressure required to maintain a useful flow across the filter reaches its maximum level. At this point, the filter is operated in cross-flow mode, while concurrently backflushing with air or permeate solution. After a short period of backflushing in cross-flow mode to remove material deposited on the membrane, the system is switched back to dead-end operation. This procedure is particularly applicable in microfiltration units used as final bacterial and virus filters for municipal water treatment plants. The feed water has a very low loading of material to be removed, so in-line operation can be used for a prolonged time before backflushing and cross-flow to remove the deposited solids is needed. [Pg.277]

Currently, the pressure-driven membrane processes, reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF), are widely used in water treatment, biotechnology, food industry, medicine, and other fields (Baker 2004). However, one of the main problems arising from the operation of the manbrane units is membrane fouling, which seriously hampers the applications of manbrane technologies (Scot and Hughes 1996). [Pg.42]

Kennedy MD, Kamanyi J, Salinas Rodriguez SG, Lee NH, Schippers JC and Amy G (2008), Water treatment by microfiltration and ultrafiltration in Advanced Membrane Technology and Applications, New York, John Wiley Sons, 131-170. [Pg.340]

By contrast porous ceramic membranes had found application since the 1960s in the field of large-scale gas diffusion processes for uranium isotope separation. It was only in the 1980s that porous ceramic membranes found other non-nuclear industrial applications, mainly oriented towards microfiltration and ultrafiltration water treatment processes. [Pg.299]

Bouhabila, E.H., Ben Aim, R. and Buisson, H. (1998) Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment). Conference on Membranes in Drinking and Industrial Water Production, Amsterdam. [Pg.391]

Heidenreich S and Scheibner B. Hot gas filtration with ceramic filters Experiences and new developments. Filtr. Sep. 2002 May 22-25. Heidenreich S and Wolters C. Hot gas filter contributes to IGCC power plant s reliable operation. Filtr. Sep. 2004 June 22-25. Larbot A, Bertrand M, Marre S, and Prouzet E. Performances of ceramic filters for air purification. Sep. Purif. Technol. 2003 32 81-85. DeFriend KA and Barron AR. A simple approach to hierarchical ceramic ultrafiltration membranes. J. Membr. Sci. 2003 212 29-38. Endo Y, Chen D-R, and Pui DYH. Collection efficiency of sintered ceramic filters made of submicron spheres. Filtr. Sep. 2002 March 43-47. Sakol D and Konieczny K. Application of coagulation and conventional filtration in raw water pre-treatment before microfiltration membranes. Desalination 2004 162 61-73. [Pg.175]

Some areas of application are the nuclear industry and the treatment of radioactive liquid wastes, with two main purposes reduction in the waste volume for further disposal, and reuse of decontaminated water. Pressure-driven membrane processes (microfiltration, ultrafiltration, nanofiltration, and reverse osmosis [RO]) are widely used for the treatment of radioactive waste. [Pg.919]

Sakol D and Konieczny K. Application of coagulation and conventional filtration in raw water pre-treatment before microfiltration membranes. Desalination 2004 162 61-73. [Pg.252]

Poly(vinylidene fluoride) (PVDF) is one of the promising polymeric materials that has prominently emerged in membrane research and development (R D) due to its excellent chemical and physical properties such as highly hydrophobic nature, robust mechanical strength, good thermal stability, and superior chemical resistance. To date, PVDF hollow-fiber membranes have dominated the production of modem microfiltration (MF) ultrafiltration (UF) membrane bioreactor (MBR) membranes for municipal water and wastewater treatment and separation in food, beverage, dairy, and wine industries. In the last two decades, increasing effort has been made in the development of PVDF hollow fibers in other separation applications such as membrane contractors [6,7], membrane distillation (MD) [8-11], and pervaporation [12,13]. [Pg.216]


See other pages where Microfiltration water treatment membrane applications is mentioned: [Pg.334]    [Pg.179]    [Pg.244]    [Pg.666]    [Pg.555]    [Pg.29]    [Pg.216]    [Pg.79]    [Pg.176]    [Pg.337]    [Pg.151]    [Pg.616]    [Pg.536]    [Pg.982]    [Pg.157]    [Pg.889]    [Pg.373]    [Pg.91]   
See also in sourсe #XX -- [ Pg.146 , Pg.147 ]




SEARCH



Applications water

Applicators treatment

Membrane applications membranes)

Membrane microfiltration

Membrane treatment

Membranes applications

Microfiltration

Microfiltration application

Microfiltration water

Water Treatment Application

Water treatment

© 2024 chempedia.info