Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition acrylate

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

A large number of hindered phenoHc antioxidants are based on the Michael addition of 2,6-di-/ f2 -butylphenol and methyl acrylate under basic catalysis to yield the hydrocinnamate which is a basic building block used in the production of octadecyl 3-(3,5-di-/ f2 butyl-4-hydroxyphenyl)propionate, [2082-79-3], tetrakis(methylene-3(3,5-di-/ f2 butyl-4-hydroxylphenyl)propionate)methane [6683-19-8], and many others (63,64). These hindered phenolic antioxidants are the most widely used primary stabilizers in the world and are used in polyolefins, synthetic and natural mbber, styrenics, vinyl polymers, and engineering resins. 2,6-Di-/ f2 -butylphenol is converted to a methylene isocyanate which is trimerized to a triazine derivative... [Pg.69]

Michael-Type Additions. Michael additions are generally used to prepare methyl 3-mercaptopropionate (eq. 10) and mercaptopropionitrile (eq. 11) by the reaction of methyl acrylate or acrylonitrile and hydrogen sulfide using a basic catalyst. This reaction proceeds as shown ... [Pg.11]

The 6-methoxymethylene penicillanic acid [93040-42-7] (31, R = CH OCH (2)-isomer, R" = R " = 3) designed to mimic the amino acrylate species found usiag clavulanic acid and sulbactam. Upon the reaction of this compound with the enzyme, the potential exists for further Michael addition to inactivate the enzyme. The compound is indeed a -lactamase inhibitor but no synergy data have been reported. The related imine stmcture... [Pg.55]

Enamine addition to an unsaturated ester, followed by an intramolecular alkylation, provided a facile synthesis of an adamantane bis-/3-ketoester 674). Michael addition of pyrrolidinocycloheptene to other acrylic esters 668) and of other enamines to acrylic acids 675), a chloroacrylonitrile 676), and an unsaturated cyanocarboxamide (577) were reported. [Pg.372]

Michael addition reaction of 1-hydroxytryptamines to Q ,/3-unsaturated carbonyl compounds is worthy of note (99H2815). Addition of Ab-acetyl- 1-hydroxy-tryptamine (39) to methyl acrylate and methyl crotonate in the presence of... [Pg.109]

Pyrazo[l,5-a]quinolines were synthesized by reaction of acrylates with 1-(Af-methylamino)quinolines 430 to afford the corresponding Michael addition product 431 which upon dehydrogenation with DDQ gave 432. [Pg.124]

Michael additions followed by further Michael additions have become popular reactions and are usually referred to as Michael Michael Induced Ring Closure (MIM1RC) reactions. A three component Michael-Michael-aldol reaction of ketone enolates with acrylates can be achieved, resulting in the formation of six-membered ring compounds with good efficiency and high diastereoselectivites319. [Pg.994]

Michael additions of III to reactive acceptors appear feasible. Derivatives were formed from acrylonitrile and ethyl acrylate. Although these were not fully characterized, they were observed by HPLC analysis. [Pg.209]

The application of 3-aminopropyl phosphine (3) [41,46] as a building block for incorporation into -COOH functionalized frameworks provides an excellent example of the utility of preformed primary phosphine frameworks (Scheme 8) [46]. The reactions involved Michael addition of ferf-butyl acrylate to malonic acid dimethyl ester to produce the intermediate adduct, 2-methoxycarbonyl-pentanedioc acid 5-ferf-butyl ester 1-methyl ester, which upon treatment with trifluro-acetic acid (TFA) produced the corresponding diester acid,2-methoxy-carbonyl-pentanedioic acid 1-methyl ester, in near quantitative yield. It is remarkable to note that the reaction of NH2(CH2)3PH2 (3) with the diester acid is highly selective as the -COOH group remained unattacked whereas the reaction occurred smoothly and selectively at the -COOMe groups to pro-... [Pg.128]

Amide disconnection reveals (18) and FGl (amino to nitro) gives (19) which could be made by Michael addition of nitro compound (16) to an acrylate ester.. lalys-ts... [Pg.251]

The combination of CsF with Si(OMe)4 58 is an efficient catalyst for Michael additions, e.g. of tetralone 130 to methacrylamide, followed hy cyclization of the addition product to the cyclic enamide 131 in 94% yield [67]. Likewise, addition of the lactone 132 to methyl cinnamate affords, after subsequent cyclization with tri-fluoroacetic acid, the lactam 133 in 58% yield [68] whereas < -valerolactam 134, with ethyl acrylate in the presence of Si(OEt)4 59/CsF, gives 135 in 98% yield [69]. Whereas 10mol% of CsF are often sufficient, equivalent amounts of Si(OEt)4 59 seem to be necessary for preparation of 135 [69] (Scheme 3.11). [Pg.34]

On the other hand, many reactions are known where in a first intermolecular step a functionality is introduced which than can undergo an intramolecular reaction. A nice example is the reaction of dienone 0-34 with methyl acrylate in the presence of diethylaluminum chloride to give the bridged compound 0-35 (Scheme 0-11). The first step is an intermolecular Michael addition, which is followed by an intramolecular Michael addition. This domino process is the key step of the total synthesis of valeriananoid A, as described by Hagiwara and coworkers [21]. [Pg.7]

Twofold Michael additions have been utilized by the groups of Spitzner [2] and Hagiwara [3] to construct substituted bicyclo[2.2.2]octane frameworks. In Hagiwara s approach towards valeriananoid A (2-6) [4], treatment of trimethylsily-enol ether 2-2, prepared from the corresponding oxophorone 2-1, and methyl acrylate (2-3) with diethylaluminum chloride at room temperature (r.t.) afforded the bicyclic compound 2-4 (Scheme 2.2). Its subsequent acetalization allowed the selective protection of the less-hindered ketone moiety to provide 2-5, which could be further transformed into valeriananoid A (2-6). [Pg.49]

In recent years, there has been increased recognition that water is an attractive medium for organic reactions from the environmental point of view. The Michael addition of various nitroalkanes to conjugated enones can be performed in NaOH (0.025 M) and in the presence of cetyltrimethylammonium chloride (CTAC1) as cationic surfactant in the absence of organic solvents (Eq. 4.109).146 The Michael addition of nitromethane to methyl acrylate is carried out in water using NaOH as a base to give the mono adduct (Table 4.2).147... [Pg.104]

Hydroxamic acids constitute an important class of siderophores, which play a major role in iron solubilization and transport. Some of them are important as therapeutic agents. The Michael addition of nitroacetyl proline esters to allyl acrylate followed by Pd(0)-catalyzed intramolecular allyl transfer and subsequent reduction of the nitro group yields a novel class of cyclic hydroxamic acids related to pyroglutamic acid (Scheme 5.9).85... [Pg.143]

Treatment of 71a with phosphorus oxychloride readily afforded the dichloro derivative 79 in 95% yield. Michael addition with methyl acrylate in the presence of Triton B led to the regioselective formation of 80 (Scheme 3)... [Pg.230]

The controlled polymerization of (meth)acrylates was achieved by anionic polymerization. However, special bulky initiators and very low temperatures (- 78 °C) must be employed in order to avoid side reactions. An alternative procedure for achieving the same results by conducting the polymerization at room temperature was proposed by Webster and Sogah [84], The technique, called group transfer polymerization, involves a catalyzed silicon-mediated sequential Michael addition of a, /f-unsaluralcd esters using silyl ketene acetals as initiators. Nucleophilic (anionic) or Lewis acid catalysts are necessary for the polymerization. Nucleophilic catalysts activate the initiator and are usually employed for the polymerization of methacrylates, whereas Lewis acids activate the monomer and are more suitable for the polymerization of acrylates [85,86]. [Pg.50]

In 2002, Leadbeater and Torenius reported the base-catalyzed Michael addition of methyl acrylate to imidazole using ionic liquid-doped toluene as a reaction medium (Scheme 6.133 a) [190], A 75% product yield was obtained after 5 min of microwave irradiation at 200 °C employing equimolar amounts of Michael acceptor/donor and triethylamine base. As for the Diels-Alder reaction studied by the same group (see Scheme 6.91), l-(2-propyl)-3-methylimidazolium hexafluorophosphate (pmimPF6) was the ionic liquid utilized (see Table 4.3). Related microwave-promoted Michael additions studied by Jennings and coworkers involving indoles as heterocyclic amines are shown in Schemes 6.133 b [230] and 6.133 c [268], Here, either lithium bis(trimethylsilyl)amide (LiHMDS) or potassium tert-butoxide (KOtBu) was em-... [Pg.195]

Imidazole has been condensed via a 1,4 Michael addition with ethyl acrylate by use of basic clays (Li+ and Cs+ montmorillonites) under solvent-free conditions with microwave irradiation [77] (Eq. 24). [Pg.84]

It was shown that microwave irradiation accelerated the 1,4 Michael addition of primary and cyclic secondary amines to acrylic esters, leading to several /j-amino acid derivatives in good yields within short reaction times [78] (Eq. 25). [Pg.84]

The microwave activation of Michael additions in the preparation of N-substituted imidazoles afforded excellent yields in very short reaction times under mild reaction conditions, Scheme 10.9. Basic clays (Li+, Cs+) exchanged montmorillonites were found to be very active and selective catalysts for the Michael addition of imidazole and ethyl acrylate [54]. [Pg.355]

Scheme 10.9 Michael addition of imidazole with ethyl acrylate. Scheme 10.9 Michael addition of imidazole with ethyl acrylate.
The first successful results of the asymmetric Michael addition under phase transfer catalyzed conditions were achieved by use of ingeniously designed chiral crown ethers 13 and 52.1441 The 3-keto ester 49 reacted with methyl vinyl ketone by use of 13 to give the Michael product 50 with excellent enantioselectivity but in moderate yield, as shown in Scheme 18. The Michael addition of methyl 2-phenylpropionate 51 to methyl acrylate afforded the diester 53 by use of another crown ether 52 in good yield with good enantioselectivity.1441 Various chiral crown ethers were studied to... [Pg.133]

The Michael addition reaction of the serine-derived oxazolidine 326 with ethyl acrylate gave two products. The major product of the reaction was found to be the bicyclic compound 327, which was formed in 27% yield, accompanied by the unsaturated ester 328. The Dess-Martin oxidation of 327 resulted only in formation of the elimination product, the 7,7a-dihydro-177, 377-pyrrolo[l,2-r ]oxazole 328 (Scheme 46) <2001JOC7555>. [Pg.87]


See other pages where Michael addition acrylate is mentioned: [Pg.673]    [Pg.673]    [Pg.113]    [Pg.354]    [Pg.233]    [Pg.511]    [Pg.148]    [Pg.162]    [Pg.104]    [Pg.911]    [Pg.641]    [Pg.129]    [Pg.41]    [Pg.641]    [Pg.67]    [Pg.241]    [Pg.347]    [Pg.244]    [Pg.165]    [Pg.206]    [Pg.61]    [Pg.70]    [Pg.186]    [Pg.22]    [Pg.25]   
See also in sourсe #XX -- [ Pg.233 , Pg.313 ]




SEARCH



Acrylate esters, Michael addition

Acrylic additives

Ethyl acrylate, Michael addition

© 2024 chempedia.info