Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl butadiene styrene

Impact strength can be improved by other methods of modification—for example, by biaxial orientation of the material during or immediately after moulding. When transparent or translucent bottles are required in unplasticized poly(vinyl chloride) strength can be improved by including up to about 10% methyl-butadiene-styrene copolymers the bottles resulting retain a good finish. [Pg.141]

Impact modifiers for PVC include methyl butadiene styrene (MBS) and acrylics. MBS modifiers improve the impact strength of PVC compounds without sacrificing the other characteristics. They are used for a variety of rigid and semirigid applications and processes, such as blow moulding of bottles, calendering of film and sheet, extrusion of profiles, and injection moulding of technical parts. Some types can also be tailored to suit specific requirements. [Pg.190]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Fig. 10. Preparation and morphology of toughened PVC (a) secondary PVC grain (50—250 flm) (b) modified PVC with coherent primary grain (ca 1 -lm) (220). CPE = chlorinated polyethylene EVA = ethylene—vinyl acetate copolymers ABS = acrylonitrile—butadiene—styrene MBS = methyl... Fig. 10. Preparation and morphology of toughened PVC (a) secondary PVC grain (50—250 flm) (b) modified PVC with coherent primary grain (ca 1 -lm) (220). CPE = chlorinated polyethylene EVA = ethylene—vinyl acetate copolymers ABS = acrylonitrile—butadiene—styrene MBS = methyl...
MBS = methyl methacrylate—butadiene—styrene and MABS = methacrylate-acrylonitrile—butadiene—styrene. [Pg.503]

Besides the MBS materials, related terpolymers have been prepared. These include materials prepared by terpolymerising methyl methacrylate, acrylonitrile and styrene in the presence of polybutadiene (Toyolac, Hamano 500) methyl methacrylate, acrylonitrile and styrene in the presence of a butadiene-methyl methacrylate copolymer (XT Resin), and methylacrylate, styrene and acrylonitrile on to a butadiene-styrene copolymer. [Pg.449]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

Methyl methacrylate-styrene-butadiene-acrylonitrile copolymer >10 8.4 1.4 87 4,700 480 0,020 0,025 C11... [Pg.525]

Styrene acrylonitrile Styrene butadiene Styrene maleic anhydride Styrene methyl methacrylate Thermoplastic urethane, rigid... [Pg.330]

There are various requirements for impact-modified PVC. The most demanding is for outdoor sidings and window frames, where lifetimes of 20 years are expected. Because butadiene polymers or copolymers (e.g., acrylonitrile/butadiene/styrene (ABS), methyl methacrylate/butadiene/styrene (MBS)) are susceptible to UV degradation these polymers are usually not employed instead acrylate polymers are used for these applications. [Pg.114]

Mikami and co-workers16-19 have done extensive work for developing catalysts for the asymmetric carbonyl-ene reaction. Excellent enantioselectivites are accessible with the binol-titanium catalyst 17 (Equation (10)) for the condensation of 2-methyl butadiene (R1 = vinyl) and glyoxalates (binol = l,T-binaphthalene-2,2 -diol).16 The products were further manipulated toward the total synthesis of (i )-(-)-ipsdienol. The oxo-titanium species 18 also provides excellent enantioselectivity in the coupling of a-methyl styrene with methyl glyoxalate.17 Reasonable yields and good enantioselectivites are also obtained when the catalyst 19 is formed in situ from titanium isopropoxide and the binol and biphenol derivatives.18... [Pg.561]

Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
MBS (methyl methacrylate-butadiene-styrene) graft copolymers are known as one of the most efficient non-reactive impact modifiers for PET and also poly(vinyl chloride) (PVC). MBS is used commercially as an effective impact modifier for PET recyclate [27], Typical MBS rubber particles contain an elastomeric core of... [Pg.511]

MBS (poly(methyl methacrylate)-g-poly(butadiene/styrene) graft copolymer) Paraloid EXL Rohm Haas... [Pg.512]

List C contains peroxidisable monomers, where the presence of peroxide may initiate exothermic polymerisation of the bulk of material. Precautions and procedures for storage and use of monomers with or without the presence of inhibitors are discussed in detail. Examples cited are acrylic acid, acrylonitrile, butadiene, 2-chlorobutadiene, chlorotrifluoroethylene, methyl methacrylate, styrene, tetraflu-oroethylene, vinyl acetate, vinylacetylene, vinyl chloride, vinylidene chloride and vinylpyridine [1]. [Pg.328]

ISO 10366-1 2002 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 10366-2 2003 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties... [Pg.363]

Uses Copolymerized with methyl acrylate, methyl methacrylate, vinyl acetate, vinyl chloride, or 1,1-dichloroethylene to produce acrylic and modacrylic fibers and high-strength fibers ABS (acrylonitrile-butadiene-styrene) and acrylonitrile-styrene copolymers nitrile rubber cyano-ethylation of cotton synthetic soil block (acrylonitrile polymerized in wood pulp) manufacture of adhesives organic synthesis grain fumigant pesticide monomer for a semi-conductive polymer that can be used similar to inorganic oxide catalysts in dehydrogenation of tert-butyl alcohol to isobutylene and water pharmaceuticals antioxidants dyes and surfactants. [Pg.81]

Emulsion polymerization is used for 10-15% of global polymer production, including such industrially important polymers as poly(acrylonitrile-butadiene-styrene) (ABS), polystyrene, poly(methyl methacrylate), and poly (vinyl acetate) [196]. These are made from aqueous solutions with high concentrations of suspended solids. The important components have unsaturated carbon-carbon double bonds. Raman spectroscopy is well-suited to address these challenges, though the heterogeneity of the mixture sometimes presents challenges. New sample interfaces, such as WAI and transmission mode, that have shown promise in pharmaceutical suspensions are anticipated to help here also. [Pg.222]

MABS methyl methacrylate-acrylonitrile-butadiene-styrene... [Pg.404]

Butadiene Styrene Vinyl Acetate Vinyl Methyl Methyl Chloride Methacrylate Acrylate Acrylonitrile ... [Pg.492]

Butadiene Styrene Methyl Methyacrylate Acrylonitrile Methyl Acrylate Vinyl Acetate Vinyl Chloride Q e... [Pg.493]

Penultimate effects have been observed for many comonomer pairs. Among these are the radical copolymerizations of styrene-fumaronitrile, styrene-diethyl fumarate, ethyl methacrylate-styrene, methyl methacrylate l-vinylpyridine, methyl acrylate-1,3-butadiene, methyl methacrylate-methyl acrylate, styrene-dimethyl itaconate, hexafluoroisobutylene-vinyl acetate, 2,4-dicyano-l-butene-isoprene, and other comonomer pairs [Barb, 1953 Brown and Fujimori, 1987 Buback et al., 2001 Burke et al., 1994a,b, 1995 Cowie et al., 1990 Davis et al., 1990 Fordyce and Ham, 1951 Fukuda et al., 2002 Guyot and Guillot, 1967 Hecht and Ojha, 1969 Hill et al., 1982, 1985 Ma et al., 2001 Motoc et al., 1978 Natansohn et al., 1978 Prementine and Tirrell, 1987 Rounsefell and Pittman, 1979 Van Der Meer et al., 1979 Wu et al., 1990 Yee et al., 2001 Zetterlund et al., 2002]. Although ionic copolymerizations have not been as extensively studied, penultimate effects have been found in some cases. Thus in the anionic polymerization of styrene t-vinylpyri-dine, 4-vinylpyridine adds faster to chains ending in 4-vinylpyridine if the penultimate unit is styrene [Lee et al., 1963]. [Pg.515]

Although this method yields a mixture of homopolymer and graft copolymer, and probably also ungrafted backbone polymer, some of the systems have commercial utility. These are high-impact polystyrene (HIPS) [styrene polymerized in the presence of poly(l,3-buta-diene)], ABS and MBS [styrene-acrylonitrile and methyl methacrylate-styrene, respectively, copolymerized in the presence of either poly(l,3-butadiene) or SBR] (Sec. 6-8a). [Pg.754]

MBS methyl methacrylate butadiene styrene copolymer blend... [Pg.35]

Methacrylonitrile (1) differs from 2 only in that it has a methyl (CH3) group on the a-carbon atom. It too is widely used in the preparation of homopolymers and copolymers, elastomers, and plastics and as a chemical intermediate in the preparation of acids, amides, amines, esters, and other nitriles. In a study conducted by the NTP in which 1 was administered orally to mice for 2 years, there was no evidence that it caused cancer, although other less serious toxic effects were noted [27]. Because 1 does not cause cancer, but undergoes many of the same nucleophilic addition reactions as 2 at the (3-carbon, it is sometimes used as a safer commercial replacement for 2, such as in the manufacture of an acrylonitrile-butadiene-styrene-like polymer that provides improved barrier properties to gases such as carbon dioxide in carbonated beverage containers. [Pg.12]


See other pages where Methyl butadiene styrene is mentioned: [Pg.199]    [Pg.199]    [Pg.625]    [Pg.191]    [Pg.68]    [Pg.831]    [Pg.541]    [Pg.331]    [Pg.203]    [Pg.227]    [Pg.207]    [Pg.311]    [Pg.426]    [Pg.894]    [Pg.404]    [Pg.143]    [Pg.356]    [Pg.530]    [Pg.84]    [Pg.315]   
See also in sourсe #XX -- [ Pg.141 , Pg.159 ]




SEARCH



3- -4-methyl-styren

METHYL STYRENE

Styrene-butadiene

© 2024 chempedia.info