Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl alcohol manufacture

Absolute methyl alcohol. The synthetic methanol now available is suitable for most purposes without purification indeed, some manufacturers claim a purity of 99 85 per cent, with not more than 0 1 per cent, by weight of water and not more than 0 02 per cent, by weight of acetone. Frequently, however, the acetone content may be as high as 0 1 per cent, and the water content 0-5-1 per cent. [Pg.169]

Tetrahydronaphthalene [119-64-2] (Tetralin) is a water-white Hquid that is insoluble in water, slightly soluble in methyl alcohol, and completely soluble in other monohydric alcohols, ethyl ether, and most other organic solvents. It is a powerhil solvent for oils, resins, waxes, mbber, asphalt, and aromatic hydrocarbons, eg, naphthalene and anthracene. Its high flash point and low vapor pressure make it usehil in the manufacture of paints, lacquers, and varnishes for cleaning printing ink from rollers and type in the manufacture of shoe creams and floor waxes as a solvent in the textile industry and for the removal of naphthalene deposits in gas-distribution systems (25). The commercial product typically has a tetrahydronaphthalene content of >97 wt%, with some decahydronaphthalene and naphthalene as the principal impurities. [Pg.483]

Manufacture is either by reaction of molten sodium with methyl alcohol or by the reaction of methyl alcohol with sodium amalgam obtained from the electrolysis of brine in a Castner mercury cell (78). Both these methods produce a solution of sodium methylate in methanol and the product is offered in two forms a 30% solution in methanol, and a soHd, which is a dry, free-flowing white powder obtained by evaporating the methanol. The direct production of dry sodium methylate has been carried out by the introduction of methanol vapors to molten sodium in a heavy duty agitating reactor. The sohd is supphed in polyethylene bags contained in airtight dmms filled in a nitrogen atmosphere. [Pg.26]

Primary alcohols are produced either by the catalytic hydrogenation of methyl esters or by fatty acids derived from oils and fats, e.g., coconut oil (C12-C14) or tallow (Cl6-C18), or from synthetic sources. Alcohols manufactured from natural oils and fats and from the Ziegler-type processes produce even-numbered chain length primary alcohols. [Pg.672]

EICEIO, a gas with an irritating smell. It is made industrially by the oxidation of methyl alcohol, and is used in the manufacture of phenol-formaldehyde and urea-formaldehyde resins and plastics. [Pg.29]

However, if you link the hydroxyl group with the methane molecule rather than the ethane, you get the potentially toxic chemical called methyl alcohol, or wood spirit. Similarly, if you add what s called an aldehyde group (-CHO) instead of the hydroxyl group, you will get one of a variety of chemicals called aldehydes, of which a common one is the gas formaldehyde (HCHO), widely used in the manufacture of plastics and glues. This gas can be an irritant and potentially dangerous if inhaled. [Pg.24]

The early sources of phenol were the destructive distillation of coal and the manufacture of methyl alcohol from wood. In both cases, phenol was a by-product. Recovered volumes were limited by whatever was made accidentally in the process. Initial commercial routes to on-purpose phenol involved the reaction of benzene with sulfuric acid (1920), chlorine (1928), or hydrochloric acid (1939) all these were followed by a subsequent hydrolysis step (reaction with water to get the -OH group) to get phenol. These processes required high temperatures and pressures to make the reactions go. They re multistep processes requiring special metallurgy to handle the corrosive mixtures involved. None of these processes is in commercial use today. [Pg.111]

Uses Manufacture of vanillin, Michler s ketone, methyl violet, and other dyes solvent reagent for methyl alcohol, hydrogen peroxide, methyl furfural, nitrate, and formaldehyde chemical intermediate stabilizer reagent. [Pg.469]

Methylene dichloride and chloroform may be produced by modified methods using a mixture of chlorine, methane, and methyl chloride as feed. Chlorination is run at 350-400°C reactor temperature at slightly above atmospheric pressure. A 2.6 1 chlorine methane ratio results in an optimal yield of chloroform. Alternatively, excess methane is reacted with chlorine at 485-510°C to produce methylene dichloride as the main product.181 The predominant method, however, still is the chlorination of methyl chloride manufactured by the reaction of methyl alcohol and hydrogen chloride.181... [Pg.593]

Many alcohols are prepared by reduction of the corresponding methyl esters which are derived from animal or vegetable fats, These alcohols are straight chain even-carbon-numbered compounds. Tallow and coconut oil are two major raw materials for higher alcohol manufacture. [Pg.47]

At the time of the first World War the methyl alcohol which was needed for the preparation of tetryl was procured from the distillation of wood. It was expensive and limited in amount. Formaldehyde was produced then, as it is now, by the oxidation of methyl alcohol, and a demand for it was a demand upon the wood-distillation industry. Formaldehyde was the raw material from which methylamine was produced commercially, and the resulting methylamine could be used for the preparation of tetryl by the alternative method from dinitrochlorobenzene. It was also the raw material from which certain useful explosives could be prepared, but its high price and its origin in the wood-distillation industry deprived the explosives in question of all but an academic interest. With the commercial production of synthetic methyl alcohol, the same explosives are now procurable from a raw material which is available in an amount limited only by the will of the manufacturers to produce it. [Pg.276]

FIGURE 2 Acetaldehyde manufacture by carbonylation of methyl alcohol (methanol). [Pg.12]

Alternatively, methane can be manufactured by the reaction of carbon monoxide and hydrogen in the presence of a nickel catalyst. Methane also is formed by reaction of magnesium methyl iodide (Grignard s reagent) in anhydrous ether with substances containing the hydroxyl group. Methyl iodide (bromide, chloride) is preferably made by reaction of methyl alcohol and phosphorus iodide (bromide, chloride). [Pg.319]

Methyl alcohol FIGURE 1 Manufacture of methyl-f-butyl ether. [Pg.331]

Methyl alcohol (methanol) is manufactured from a mixture of carbon monoxide and hydrogen (synthesis gas), using a copper-based catalyst. [Pg.618]

Alcohols are hydrocarbons with one or more hydrogen atoms substituted by hydroxyl (-OH) groups. Compounds with one hydroxyl group are called alcohols, those with two are called glycols, and those with three hydroxyls are called glycerols. Alcohols are used extensively in industries as solvents for the manufacture of a variety of products. Generally, all alcohols cause irritation to the mucous membranes with mild narcotic effect. There are important classes of alcohols, namely, allyl alcohol, amyl alcohol, n-butyl alcohol, methyl alcohol, ethyl alcohol, and propyl alcohol. [Pg.227]

Uses Methyl alcohol is a clear, colorless liquid with a slight alcoholic odor. It is used in the synthesis of formaldehyde, methylamine, ethylene glycol, methacrylates, and as an industrial solvent for a number of products (e.g., inks, resins, adhesives, dyes for straw hats). Methyl alcohol is an important ingredient commonly used to prepare grease and dirt remover. It also is used in the manufacture of photographic films, plastics, celluloid, textile soaps, wood stains, coated fabrics, paper coatings, artificial leather, and other industrial products. [Pg.229]

In some oil producing countries (e.g. U.S.S.R.), toluene is obtained from aromatic fractions of petroleum or by aromatization of heavy petroleum hydrocarbons by cracking processes (in Poland studies on aromatization of petroleum were carried out by K. Smolenski [1] between 1922 and 1939). In war-time the demand for toluene for nitration was so large, that these two sources were inadequate. During World War II new methods of toluene manufacture on an industrial scale were developed starting from benzene and methyl alcohol and from n-heptane. [Pg.345]

Methanol (methyl alcohol) was originally produced by the destructive distillation of wood chips in the absence of air. This source led to the name wood alcohol. During Prohibition (1919-1933), when the manufacture of alcoholic beverages was prohibited in the United States, anything called alcohol was often used for mixing drinks. Since methanol is more toxic than ethanol, this practice resulted in many cases of blindness and death. [Pg.433]


See other pages where Methyl alcohol manufacture is mentioned: [Pg.213]    [Pg.213]    [Pg.259]    [Pg.259]    [Pg.76]    [Pg.512]    [Pg.374]    [Pg.504]    [Pg.586]    [Pg.238]    [Pg.173]    [Pg.284]    [Pg.289]    [Pg.33]    [Pg.7]    [Pg.86]    [Pg.991]    [Pg.180]    [Pg.296]    [Pg.265]    [Pg.50]    [Pg.204]    [Pg.256]    [Pg.388]    [Pg.424]    [Pg.93]    [Pg.94]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Alcohol Methylic

Alcohols manufacture

Alcohols methylation

Chemical manufacturing, chemicals used methyl alcohol

Methyl alcohol—

© 2024 chempedia.info