Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol solution preparation

Place 50 mL of 0.1 M sodium sulfite and three drops of thymophthalein indicator into a 250-mL Erlenmeyer flask. Titrate the contents of the flask to a colorless endpoint with 0.1 N HCI (usually one or two drops is sufficient). Transfer 10 mL of the formaldehyde/methanol solution (prepared in 3.3.1) into the same flask and titrate the mixture with 0.1 N HCI, again, to a colorless endpoint. The formaldehyde concentration of the standard may be calculated by the following equation ... [Pg.1182]

Solution A was prepared by dissolving potassium acetate in methanol Solution B was pre pared by adding potassium methoxide to acetic acid Reaction of methyl iodide either with solu tion A or with solution B gave the same major product Why" What was this product" ... [Pg.362]

Alcoholysis (ester interchange) is performed at atmospheric pressure near the boiling point of methanol in carbon steel equipment. Sodium methoxide [124-41 -4] CH ONa, the catalyst, can be prepared in the same reactor by reaction of methanol and metallic sodium, or it can be purchased in methanol solution. Usage is approximately 0.3—1.0 wt % of the triglyceride. [Pg.446]

Manufacture. The manufacture of 1,4-cyclohexanedimethanol can be accompHshed by the catalytic reduction under pressure of dimethyl terephthalate ia a methanol solution (47,65). This glycol also may be prepared by the depolymerization and catalytic reduction of linear polyesters that have alkylene terephthalates as primary constituents. Poly(ethylene terephthalate) may be hydrogenated ia the presence of methanol under pressure and heat to give good yields of the glycol (see Polyesters) (66,67). [Pg.374]

Alkoxyall l Hydroperoxides. These compounds (1, X = OR , R = H) have been prepared by the ozonization of certain unsaturated compounds in alcohol solvents (10,125,126). 2-Methoxy-2-hydroperoxypropane [10027-74 ] (1, X = OR , R" = methyl), has been generated in methanol solution and spectral data obtained (127). A rapid exothermic decomposition upon concentration of this peroxide in a methylene chloride—methanol solution at 0°C has been reported (128). 2-Bromo-l-methoxy-l-methylethylhydroperoxide [98821-14-8]has been distilled (bp 60°C (bath temp.), 0.013 kPa) (129). Two cycHc alkoxyaLkyl hydroperoxides from cyclodecanone have been reported (1, where X = OR R, R = 5-oxo-l, 9-nonanediyl) with mp 94—95°C (R" = methyl) and mp 66—68°C (R" = ethyl) (130). Like other hydroperoxides, alkoxyaLkyl hydroperoxides can be acylated or alkylated (130,131). [Pg.113]

An example of an alkyl monoperoxycarbonic acid, 0-ben2yl monoperoxycarbonic acid [52123-51 -0] was prepared ia aqueous methanol solution by basic perhydrolysis of diben2yl peroxydicarbonate [2144-45-8] and subsequendy isolated ia 97% purity. It has been used as an epoxidi2iag agent (185) ... [Pg.120]

Films or membranes of silkworm silk have been produced by air-drying aqueous solutions prepared from the concentrated salts, followed by dialysis (11,28). The films, which are water soluble, generally contain silk in the silk I conformation with a significant content of random coil. Many different treatments have been used to modify these films to decrease their water solubiUty by converting silk I to silk II in a process found usehil for enzyme entrapment (28). Silk membranes have also been cast from fibroin solutions and characterized for permeation properties. Oxygen and water vapor transmission rates were dependent on the exposure conditions to methanol to faciUtate the conversion to silk II (29). Thin monolayer films have been formed from solubilized silkworm silk using Langmuir techniques to faciUtate stmctural characterization of the protein (30). ResolubiLized silkworm cocoon silk has been spun into fibers (31), as have recombinant silkworm silks (32). [Pg.78]

Androst-4-ene-3,17-dione. Testosterone (0.58 g, 2 mmoles) is dissolved in a solution prepared from 3 ml of benzene, 3 ml of dimethyl sulfoxide, 0.16 ml (2 mmoles) of pyridine and 0.08 ml (1 mmole) of trifluoroacetic acid. After addition of 1.24 g (6 mmoles) of dicyclohexylcarbodiimide, the sealed reaction flask is kept overnight at room temperature. Ether (50 ml) is added followed by a solution of 0.54 g (6 mmoles) of oxalic acid in 5 ml of methanol. After gas evolution has ceased ( 30 min) 50 ml of water is added and the insoluble dicyclohexylurea is removed by filtration. The organic phase is then extracted twice with 5 % sodium bicarbonate and once with water, dried over sodium sulfate and evaporated to a crystalline residue (0.80 g) which still contains a little dicyclohexylurea. Direct crystallization from 5 ml of ethanol gives androst-4-ene-3,17-dione (0.53 g, 92%) in two crops, mp 169-170°. [Pg.239]

A variety of conditions has been used to prepare oxiranes from trans-hxomo-hydrins. In general, bromohydrins are heated in a solution of 5-10% methanolic potassium hydroxide for 30 min to 8 hr. Longer reflux times are required for bromohydrins which are not anti-coplanar, e.g., diequatorial bromohydrins. A 5 % solution of potassium acetate in boiling ethanol can be used to cyclize steroidal bromohydrins containing base sensitive groups. The use of 1.1 equivalents of sodium methoxide per equivalent of steroid in methanol solution is especially recommended for 9a-bromo-l lj5-hydroxy steroids. [Pg.21]

A solution of 85.8 g (0.2 moles) of 3/ -acetoxy-27-norchoIest-5-en-25-one in 500 ml of anhydrous thiophen-free benzene is added to a Grignard solution prepared from 24.3 g (1 g-atom) of magnesium and 149 g (1.05 moles) of freshly distilled methyl iodide in 575 ml of anhydrous ether. The mixture is refluxed for 3 hr and allowed to stand overnight. After cooling to 5° the complex is decomposed by the slow addition of 200 ml of ice water and 400 ml of 50% acetic acid solution, and steam distilled until no more oil passes over. The residual product is filtered, washed with water and dried at 80°. Crystallization from methanol gives 70 g (87%) of cholest-5-ene-3)5,25-diol mp 179.5-181°. The analytical sample melts at 181.5-182.5° [a]o —39° (CHCI3). [Pg.71]

Acetylene is passed for 1 hr through a mixture consisting of 0.5 g (72 mg-atoms) of lithium in 100 ml of ethylene-diamine. A solution prepared from 1 g (3.5 mmoles) of rac-3-methoxy-18-methylestra-l,3,5(10)-trien-I7-one and 30 ml of tetrahydrofuran is then added at room temperature with stirring over a period of 30 min. After an additional 2 hr during which time acetylene is passed through the solution the mixture is neutralized with 5 g of ammonium chloride, diluted with 50 ml water, and extracted with ether. The ether extracts are washed successively with 10% sulfuric acid, saturated sodium hydrogen carbonate and water. The extract is dried over sodium sulfate and concentrated to yield a solid crystalline material, which on recrystallization from methanol affords 0.95 g (87%) of rac-3-methoxy-18-methyl-17a-ethynyl-estra-l,3,5(10)-trien-17jB-ol as colorless needles mp 161°. [Pg.73]

Hydrolysis of the acetate ester with alkali, e.g., sodium methoxide in methanol, affords the free alcohol, 16/3-methyl-1,4,9( 11 )-pregnatriene-17o, 21-diol-3,20-dione. To a suspension of 3 grams of 16/3-methyl-1,4,9(11)-pregnatriene-17o,21-diol-3,20-dione-21-acetate in 40 ml of acetone is added at 0°C with stirring 2 grams of N-chlorosuccinimide and then 7 ml of a perchloric acid solution prepared by dissolving 0.548 ml of 70% perchloric acid in 33 ml of water. The resulting reaction mixture is stirred at 0°C for about 4 hours 45 minutes. [Pg.132]

In a 1,000 ml three-necked flask equipped with a stirrer, a dropping funnel and a silica gel guard pipe, 46.7 g hydroxylamine hydrochloride are dissolved cold in 480 ml methanol. Separately a solution of 56.1 g KOH in 280 ml methanol is prepared, heated to 30°C and edmixed, drop-wise under stirring to the hydroxylamine solution. All successive temperature increases dur-... [Pg.798]

The methionine nitrile (20 g) is dissolved in a solution prepared from 50 ml of aqueous 5N sodium hydroxide solution and 65 ml of ethanol. The solution is then refluxed for 24 hours ammonia is evolved. The solution is treated with activated carbon, filtered, acidified with glacial acetic acid (17 ml), chilled to -10°C and filtered to give crude product. This crude product is then slurried with a solution made up of 20 ml of water and 20 ml of methanol, filtered at -5° to -H0°C and dried to give dl-methionine as white platelets. [Pg.977]

Solochrome black solution. Prepare a 0.1 per cent solution in methanol warm to speed solution and filter. [Pg.693]

The use of chlorine as an oxidizing agent for the conversion of sulphoxides into sulphones is completely unsuccessful under anhydrous conditions. In aqueous solutions, the sulphone is formed but this is usually part of a complex mixture of chlorinated sulphoxides, chlorinated sulphones and sulphonyl chlorides89, so that the reaction is usually not very useful as a preparative method for alkyl sulphones. Dimethyl sulphone has however been obtained in 70% yield in one isolated case90. In methanol solution dibenzyl sulphoxide is cleanly oxidized to dibenzyl sulphone and benzyl sulphonyl chloride in reasonable overall yield91. [Pg.979]

The recently reported (757) conversion of 5-pyrazolones directly to a,j8-acetylenic esters by treatment with TTN in methanol appears to be an example of thallation of a heterocyclic enamine the suggested mechanism involves initial electrophilic thallation of the 3-pyrazolin-5-one tautomer of the 5-pyrazolone to give an intermediate organothallium compound which undergoes a subsequent oxidation by a second equivalent of TTN to give a diazacyclopentadienone. Solvolysis by methanol, with concomitant elimination of nitrogen and thallium(I), yields the a,)S-acetylenic ester in excellent (78-95%) yield (Scheme 35). Since 5-pyrazolones may be prepared in quantitative yield by the reaction of /3-keto esters with hydrazine (168), this conversion represents in a formal sense the dehydration of /3-keto esters. In fact, the direct conversion of /3-keto esters to a,jS-acetylenic esters without isolation of the intermediate 5-pyrazolones can be achieved by treatment in methanol solution first with hydrazine and then with TTN. [Pg.200]

Water insoluble tetrabutylammonium metaperiodate, which can be prepared from sodium metaperiodate and tetrabutylammonium hydrogen sulphate in aqueous solution, was found to be a useful reagent for the selective oxidation of sulphides in organic solvents . The reaction was generally carried out in boiling chloroform and gave dialkyl, alkyl aryl and diaryl sulphoxides in yields which are comparable with those reported for sodium metaperiodate in aqueous methanol solution (Table 4). In the case of diaryl sulphoxides, the yields decrease with prolonged reaction time. [Pg.246]


See other pages where Methanol solution preparation is mentioned: [Pg.494]    [Pg.110]    [Pg.137]    [Pg.225]    [Pg.246]    [Pg.949]    [Pg.1047]    [Pg.1079]    [Pg.14]    [Pg.171]    [Pg.236]    [Pg.246]    [Pg.41]    [Pg.50]    [Pg.115]    [Pg.49]    [Pg.364]    [Pg.368]    [Pg.361]    [Pg.78]    [Pg.210]    [Pg.236]    [Pg.214]    [Pg.374]    [Pg.28]    [Pg.36]    [Pg.36]    [Pg.408]    [Pg.18]    [Pg.204]    [Pg.261]   


SEARCH



Methanol preparation

Methanol solution

Methanolic solutions

Solution preparing

© 2024 chempedia.info