Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol cyanide

In methanolic cyanide, N-substituted pyrroles193 are substituted in the 2-position by a cyano group on anodic oxidation. Methoxylation, which is often observed as a side reaction in the anodic oxidation in methanolic cyanide, was suppressed completely. When N-substituted pyrroles carry a methyl group in the 2- and 5-positions, a side-chain cyanation occurs.193,194... [Pg.288]

In methanolic cyanide solution V-substituted pyrroles [165, 213] are substituted in the 2-position by a nitrile group when both 2- and 5-positions carry a methyl group, cyanation initially [215] takes place in the 2- and 5-positions, but these compounds are unstable and the final substitution occurs in the side chain [214, 215]. iV-substituted indoles... [Pg.688]

Recently, an oxidative dearomatization of substituted phenols followed by a desymmetrizing asymmetric intramolecular Michael addition catalyzed by the pro-linol derivative 27 has been described towards the synthesis of highly functionalized polycyclic molecules with excellent enantioselectivities [40]. As shown in Scheme 2.15, the reaction starts with an oxidation of the phenol moiety to the corresponding mera-cyclohexadienones employing PhlCOAc), mild oxidant that does not react with the aldehyde nor with the catalyst. In the presence of different nucleophiles such as, methanol, cyanide, or fluoride, intermediates 26 are formed, which suffer intramolecular Michael addition of the aldehyde moiety to afford the desired chiral products 28 with excellent diastereo- and enantioselectivities. [Pg.55]

When the reaction was earned out m aqueous methanol as the solvent hexyl bromide was converted to hexyl cyanide m 71% yield by heating with sodium cyanide Although this IS a perfectly acceptable synthetic reaction a peiiod of ovei 20 hours was lequued Changing the solvent to dimethyl sulfoxide brought about an increase m the reaction rate... [Pg.347]

Magnesium Air, beryllium fluoride, ethylene oxide, halogens, halocarbons, HI, metal cyanides, metal oxides, metal oxosalts, methanol, oxidants, peroxides, sulfur, tellurium... [Pg.1209]

Synthetic chemical approaches to the preparation of carbon-14 labeled materials iavolve a number of basic building blocks prepared from barium [ CJ-carbonate (2). These are carbon [ C]-dioxide [ CJ-acetjlene [U— C]-ben2ene, where U = uniformly labeled [1- and 2- C]-sodium acetate, [ C]-methyl iodide, [ C]-methanol, sodium [ C]-cyanide, and [ CJ-urea. Many compHcated radiotracers are synthesized from these materials. Some examples are [l- C]-8,ll,14-eicosatrienoic acid [3435-80-1] inoxn. [ CJ-carbon dioxide, [ting-U— C]-phenyhsothiocyanate [77590-93-3] ftom [ " CJ-acetjlene, [7- " C]-norepinephrine [18155-53-8] from [l- " C]-acetic acid, [4- " C]-cholesterol [1976-77-8] from [ " CJ-methyl iodide, [l- " C]-glucose [4005-41-8] from sodium [ " C]-cyanide, and [2- " C]-uracil [626-07-3] [27017-27-2] from [ " C]-urea. All syntheses of the basic radioactive building blocks have been described (4). [Pg.438]

Nucleophilic aromatic substitutions involving loss of hydrogen are known. The reaction usually occurs with oxidation of the intermediate either intramoleculady or by an added oxidizing agent such as air or iodine. A noteworthy example is the formation of 6-methoxy-2-nitrobenzonitrile from reaction of 1,3-dinitrobenzene with a methanol solution of potassium cyanide. In this reaction it appears that the nitro compound itself functions as the oxidizing agent (10). [Pg.39]

Himethylformamide [68-12-2] can be produced from the reaction of hydrogen cyanide and methanol. Adenine [73-24-5] can be prepared from hydrogen cyanide in Hquid ammonia. Thioformamide [115-08-2] can be produced from hydrogen cyanide and hydrogen sulfide. [Pg.376]

Sodium cyanide is soluble in Hquid ammonia. At temperatures below —31°C, sodium cyanide pentaammoniate [69331-34-6] NaCN-5NH3, separates in large flat crystals. At 15°C, 100 g anhydrous methanol dissolves 6.44 g anhydrous sodium cyanide at 67.4°C, it dissolves 4.10 g. Sodium cyanide hemihydrate [69331 -35-7] NaCNO.5 H2O, has been obtained by recrystaUization from cold 85% alcohol. The system NaCN—NaOH—H20 has been studied (48,49). Sodium cyanide is slightly soluble in formamide, ethanol, methanol, SO2, furfural, and dimethylformamide. [Pg.381]

Direct hydrogen cyanide (HCN) gas in a fuel oil gasification plant to a combustion unit to prevent its release. 4. Consider using purge gases from the synthesis process to fire the reformer strip condensates to reduce ammonia and methanol. 5. Use carbon dioxide removal processes that do not release toxics to the environment. When monoethanolamine (MEA) or other processes, such as hot potassium carbonate, are used in carbon dioxide removal, proper operation and maintenance procedures should be followed to minimize releases to the environment. [Pg.68]

Thiohydantoin 9 was obtained from the treatment of carbonyl 1 with carbon disulfide and ammonium cyanide in aqueous methanol. The transformation could also be carried out step-wise, that is, treatment of 1 with ammonium cyanide to form aminonitrile 10 followed by reaction with carbon disulfide to produce thiohydantoin 9. Alternatively, 5,5-disubstituted 4-thiohydantoins could be prepared by the reaction of ketones with ammonium monothiocarbamate and sodium cyanide. ... [Pg.267]

The utility of 2,2 -biindolyl derivatives as indolocarbazole precursors has also been exploited extensively by Somei and co-workers, who reported the first syntheses of the naturally occurring indolo[2,3-a]carbazoles 16 and 17 (Scheme 9). A chloroacetylation of 2,2 -biindolyl (46) followed by treatment of the resulting product 58 with sodium cyanide in formamide-methanol provided 59. Transformation of 59 into the acetoxy derivative 60, followed by hydrolysis to 61, finally led to the target compounds after subsequent sequential melhylations [97H(45)1647]. [Pg.13]

Hydrogen cyanide may also be produced by the reaction of ammonia and methanol in presence of oxygen ... [Pg.137]

Schemes 15 and 16 summarize the syntheses of intermediates that represent rings A and D of vitamin Bi2 by the Eschenmoser group. Treatment of lactam/lactone 51, the precursor to B-ring intermediate 8 (whose synthesis has already been described, see Scheme 8), with potassium cyanide in methanol induces cleavage of the y-lac-tone ring and furnishes intermediate 76 after esterification of the newly formed acetic acid chain with diazomethane. Intermediate 76 is produced as a mixture of diastereomers, epimeric at the newly formed stereocenter, in a yield exceeding 95%. Selective conversion of the lactam carbonyl in 76 into the corresponding thiolactam... Schemes 15 and 16 summarize the syntheses of intermediates that represent rings A and D of vitamin Bi2 by the Eschenmoser group. Treatment of lactam/lactone 51, the precursor to B-ring intermediate 8 (whose synthesis has already been described, see Scheme 8), with potassium cyanide in methanol induces cleavage of the y-lac-tone ring and furnishes intermediate 76 after esterification of the newly formed acetic acid chain with diazomethane. Intermediate 76 is produced as a mixture of diastereomers, epimeric at the newly formed stereocenter, in a yield exceeding 95%. Selective conversion of the lactam carbonyl in 76 into the corresponding thiolactam...
In the presence of aqueous acetic acid the 4//-azepi ne 9 yields the hydroxy derivative 10 a. Addition of methanol, in the presence of Sephadex LH20, and cyanide ion in the presence of palladium(II) acetate, are also successful and yield 4,5-dihydro-l //-azepines 10b and 10c, respectively.113... [Pg.200]

Trithiadiazepine 4 is readily thalliated by thallium(III) trifluoroacetate the product 19 reacts in situ with potassium iodide, copper(I) cyanide, and methanol/carbon monoxide300 to give 20a-c, respectively.33 ... [Pg.483]

Triazolotriazines 711 were prepared (89EGP273834, 89EGP273835) by treating triazole 710 in methanol with potassium cyanide followed by acetic acid. These compounds act as intermediates for photographic emulsion stabilizers (Scheme 149). [Pg.127]

The equilibrium clathrate of methanol has the much higher value yA = 0.47 at 25°C. This is to be expected since the methanol molecule is so large that it distorts the lattice contrary to assumption (a) of Section II.A, thereby increasing the value of Ay to be taken in Eq. 25. The methyl cyanide molecule distorts the lattice even more, and as already noted by Powell,24 its equilibrium clathrate must therefore have a value of yA still higher than that for the methanol clathrate. (The CH3CN clathrate investigated by Powell, however, was not an equilibrium clathrate, cf. point B in Fig. 5). [Pg.20]

A. Piperidine-4-spiro-5 -hydantoin (1). A 1000-mL, single-necked, round-bottomed flask equipped with a magnetic stirbar and an addition funnel fitted with an argon inlet is charged with 4-piperidone monohydrate hydrochloride (30.0 g, 195 mmol), ammonium carbonate (41.3 g, 420 mmol), 250 mL of methanol, and 150 mL of deionized water (Note 1). The mixture is allowed to stir at room temperature until all solids dissolve and then a solution of potassium cyanide (26.7 g, 410 mmol) (Note 2) in 100 mL... [Pg.113]

Rate constants for the substitution reactions of square-planar dithio-phosphates and dithiocarbonate complexes of Ni(II), Pd(II), and Pt(II), with ethylenediamine and cyanide ion as nucleophiles, have been measured in methanol. The results were compared with those obtained in previous investigations, and interpreted in terms of the stabilities of 5-coordinate species that are formed prior to substitution (377). [Pg.260]

A. 2-Hydroxyimino-2-phenylacetonitrile. A 1-1., round-bottomed flask is fitted with a mechanical stirrer, a calcium chloride drying tube, a thermometer, and a gas-inlet tube. In the flask are placed 117 g. (1.0 mole) of benzyl cyanide and a solution of 40.0 g. (1.0 mole) of sodium hydroxide in 300 ml. of methanol (Note 1). The resulting solution is stirred and cooled at 0° as methyl nitrite is introduced through the gas-inlet tube, which extends below the surface of the liquid. The methyl nitrite is generated by dropwise addition of a cold solution of 32 ml. of concentrated sulfuric acid in 65 ml. of water from a 100-ml., pressure-equalizing dropping funnel into a 300-ml. Erlenmeyer flask containing a suspension of 83 g. (1.2 moles) of sodium nitrite... [Pg.184]

About a billion pounds per year of methyl methacrylate is made from acetone, hydrogen cyanide, and methanol. [Pg.130]

By studying the NMR spectra of the products, Jensen and co-workers were able to establish that the alkylation of (the presumed) [Co (DMG)2py] in methanol by cyclohexene oxide and by various substituted cyclohexyl bromides and tosylates occurred primarily with inversion of configuration at carbon i.e., by an 8 2 mechanism. A small amount of a second isomer, which must have been formed by another minor pathway, was observed in one case (95). Both the alkylation of [Co (DMG)2py] by asymmetric epoxides 129, 142) and the reduction of epoxides to alcohols by cobalt cyanide complexes 105, 103) show preferential formation of one isomer. In addition, the ratio of ketone to alcohol obtained in the reaction of epoxides with [Co(CN)5H] increases with pH and this has been ascribed to differing reactions with the hydride (reduction to alcohol) and Co(I) (isomerization to ketone) 103) (see also Section VII,C). [Pg.353]


See other pages where Methanol cyanide is mentioned: [Pg.817]    [Pg.295]    [Pg.217]    [Pg.817]    [Pg.295]    [Pg.217]    [Pg.259]    [Pg.513]    [Pg.438]    [Pg.122]    [Pg.8]    [Pg.377]    [Pg.385]    [Pg.44]    [Pg.97]    [Pg.243]    [Pg.1025]    [Pg.96]    [Pg.220]    [Pg.14]    [Pg.204]    [Pg.99]    [Pg.251]    [Pg.977]    [Pg.126]    [Pg.353]    [Pg.788]    [Pg.792]   
See also in sourсe #XX -- [ Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 ]




SEARCH



Hydrogen cyanide Methanol

© 2024 chempedia.info