Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric desymmetrization

Recently, an oxidative dearomatization of substituted phenols followed by a desymmetrizing asymmetric intramolecular Michael addition catalyzed by the pro-linol derivative 27 has been described towards the synthesis of highly functionalized polycyclic molecules with excellent enantioselectivities [40]. As shown in Scheme 2.15, the reaction starts with an oxidation of the phenol moiety to the corresponding mera-cyclohexadienones employing PhlCOAc), mild oxidant that does not react with the aldehyde nor with the catalyst. In the presence of different nucleophiles such as, methanol, cyanide, or fluoride, intermediates 26 are formed, which suffer intramolecular Michael addition of the aldehyde moiety to afford the desired chiral products 28 with excellent diastereo- and enantioselectivities. [Pg.55]

Hashimoto T, Naganawa Y, Mamoka K (2011) Desymmetrizing asymmetric ring expansion of cyclohexanones with a-diazoacetates catalyzed by chiral aluminum lewis acid. J Am Chem Soc 133 8834-8837... [Pg.181]

In 2011, Maraoka et al. reported desymmetrizing asymmetric ring expansion of substituted cyclohexanones with a-diazoacetates 70 catalyzed chiral bis-aluminum... [Pg.209]

The only notable success to date in the use of (salen)metal systems in catalysis of asymmetric cyanide addition to epoxides was achieved by Pietrusiewicz, who reported the aluminium-catalyzed desymmetrization of phospholene meso-epoxide (Scheme 7.23) in moderate ee [47]. Despite these significant efforts, a truly prac-... [Pg.243]

In contrast, Cozzi and Umani-Ronchi found the (salen)Cr-Cl complex 2 to be very effective for the desymmetrization of meso-slilbene oxide with use of substituted indoles as nucleophiles (Scheme 7.25) [49]. The reaction is high-yielding, highly enantioselective, and takes place exclusively at sp2-hybridized C3, independently of the indole substitution pattern at positions 1 and 2. The successful use of N-alkyl substrates (Scheme 7.25, entries 2 and 4) suggests that nucleophile activation does not occur in this reaction, in stark contrast with the highly enantioselective cooperative bimetallic mechanism of the (salen)Cr-Cl-catalyzed asymmetric azidolysis reaction (Scheme 7.5). However, no kinetic studies on this reaction were reported. [Pg.245]

An area in which catalytic olefin metathesis could have a significant impact on future natural product-directed work would be the desymmetrization of achiral molecules through asymmetric RCM (ARCM) or asymmetric ROM... [Pg.359]

In an asymmetric synthesis, the enantiomeric composition of the product remains constant as the reaction proceeds. In practice, ho vever, many enzymatic desymmetrizations undergo a subsequent kinetic resolution as illustrated in Figure 6.5. For instance, hydrolysis of a prochiral diacetate first gives the chiral monoalcohol monoester, but this product is also a substrate for the hydrolase, resulting in the production of... [Pg.136]

The first asymmetric synthesis of (—)-Y-jasmolactone, a fruit fiavor constituent, vas achieved via the enantioselective lactonization (desymmetrization) of a prochiral hydroxy diester promoted by porcine pancreas lipase (PPL) (Figure 6.23) [71]. [Pg.143]

Other reactions not described here are formal [3 -i- 2] cycloadditions of a,p-unsaturated acyl-fluorides with allylsilanes [116], or the desymmetrization of meso epoxides [117]. For many of the reactions shown above, the planar chiral Fe-sandwich complexes are the first catalysts allowing for broad substrate scope in combination with high enantioselectivities and yields. Clearly, these milestones in asymmetric Lewis-base catalysis are stimulating the still ongoing design of improved catalysts. [Pg.170]

The catalytic enantioselective desymmetrization of meso compounds is a powerful tool for the construction of enantiomerically enriched functionalized products." Meso cyclic allylic diol derivatives are challenging substrates for the asymmetric allylic substitution reaction owing to the potential competition of several reaction pathways. In particular, S 2 and 5n2 substitutions can occur, and both with either retention or inversion of the stereochemistry. In the... [Pg.51]

Trost and co-workers have explored asymmetric transition metal-catalyzed allylic alkylations. Details on this subject have been well reviewed by Trost and others.90 With the use of asymmetric palladium-catalyzed desymmetrization of meso-2-ene-l,4-diols, cw-l,4-dibenzoy-loxy-2-cyclopentene can be converted to the enantiometrically pure cA-4-tert-butoxycar-bamoyl-l-methoxycarbonyl-2-cyclopentene.91 The product is a useful and general building block for synthesis of carbocyclic analogs of nucleosides as presented in Scheme 5.12. [Pg.145]

Formal hydration of the double bond appeared by the hydroboration-oxidation sequence. Desymmetrization reactions with catalytic asymmetric hydroboration are not restricted to norbornene or nonfunctionalized substrates and can be successfully applied to meso bicyclic hydrazines. In the case of 157, hydroxy derivative 158 is formed with only moderate enantioselectivity both using Rh or Ir precatalysts. Interestingly, a reversal of enantioselectivity is observed for the catalytic desymmetrization reaction by exchanging these two transition metals. Rh-catalyzed hydroboration involves a metal-H insertion, and a boryl migration is involved when using an Ir precatalyst (Equation 17) <2002JA12098, 2002JOC3522>. [Pg.392]

The new heterocyclic derivative 130 has been shown to be an efficient chiral auxilliary for asymmetric desymmetrization of cyclic meso-l,2-diols via diastereoselective acetal cleavage . [Pg.368]

Asymmetric ring opening of 3,4-epoxy cyclopentanone (desymmetrization) catalyzed by 2 mol% of an (R)-BINOL modified aluminum complex affords the (4/ )-hydroxy enone in 95% ee at 98% yield (Scheme 7-29).2... [Pg.417]

Related catalytic enantioselective processes [115] Two catalytic procedures for asymmetric addition of cyanides to meso epoxides have been reported [116]. One is the result of work carried out in these laboratories, shown in Eq. 6.24, promoted by Ti-peptide chiral complexes, while the other, developed by Jacobsen and Schaus, is a Yb-catalyzed enantioselective reaction that is effected in the presence of pybox ligands (Eq. 6.25) [117]. Although the Shibasaki method (Eq. 6.21) is not as enantioselective as these latter methods, it has the advantage that it accomplishes both the epoxidation and subsequent desymmetrization in a single vessel. [Pg.218]

Scheme 6.37. Zr-catalyzed enantioselective desymmetrization of meso epoxides proceeds efficiently and with high levels of asymmetric induction. Scheme 6.37. Zr-catalyzed enantioselective desymmetrization of meso epoxides proceeds efficiently and with high levels of asymmetric induction.
In addition to its utility in the enantioselective formation of C-0 bonds (cf. Scheme 15), Trost s chiral ligand 102 has been used in the catalytic asymmetric synthesis of C-N bonds. An impressive application of this protocol is in the enantioselective total synthesis of pancrastatin by Trost (Scheme 17) H9i Thus, Pd-catalyzed desymmetrization of 112 leads to the formation of 113 efficiently and in > 95 % ee. The follow-up use of the N3 group to fabricate the requisite cyclic amide via isocyanate 117 demonstrates the impressive versatility of this asymmetric technology. [Pg.155]

With a good route to the key meso diol 128 in hand, the authors turned their attention to desymmetrization, using the known asymmetric hydrolysis of meso diacetates by Lipase AK (Scheme 23). The meso diol 128 was first converted to diacetate 140, and then hydrolyzed with Lipase AK to cleave selectively one of the two acetates, producing chiral hydroxyester 141. Oxidation, cleavage of the acetate, and lactonization yielded the (3S,4.R) lactone 129. The corresponding lactol (3S,4 )-130 was found to be the enantiomer of the compound produced in the HLADH synthesis. [Pg.81]

The process of obtaining homochiral product from a prochiral starting material is known as asymmetrization. This encompasses reactions where a faster rate of attack of a reactive species occurs on one enantiotopic face of a prochiral trigonal biplanar system, or at one enantiotopic substituent of a C2 symmetrical system, resulting in the preferential formation of one product enantiomer. The latter is also frequently referred to as the meso-trick or desymmetrization . These transformations can be more easily defined in pictorial form (Figure 1.8). [Pg.35]

Unlike kinetic resolution, catalytic desymmetrization and asymmetrization can afford enantiopure products in theoretical yields of 100 % and are more generally applicable than DKR or deracemization techniques. [Pg.35]

This section will only discuss examples of catalytic kinetic resolution, DKR, desymmetrization and asymmetrization. Deracemization will not be considered because, although an important developing technology, examples of its application to the production of chiral late-stage intermediates in API production have yet to appear. [Pg.35]

Camell and co-workers have recently applied lipase-catalysed resolution to formally desymmetrize prochiral ketones that would not normally be considered as candidates for enzyme resolution, through enantioselective hydrolysis of the chemically prepared racemic enol acetate. " For example, an NK-2 antagonist was formally desymmetrized by this approach using Pseudomonas fluorescens hpase (PFL) (Scheme 1.40). By recychng the prochiral ketone product, up to 82 % yields of the desired (5)-enol acetate (99 % ee) could be realized. This method offers a mild alternative to methodologies such as base-catalysed asymmetric deprotonation, which requires low temperature, and biocatalytic Baeyer-Villiger oxidation, which is difficult to scale up. [Pg.41]

By performing the desymmetrization on a prochiral diol, a far more efficient asymmetric biocatalytic route was subsequently developed. Enzyme screening found that... [Pg.45]

A structural requirement for the asymmetric Birch reduction-alkylation is that a substituent must be present at C(2) of the benzoyl moiety to desymmetrize the developing cyclohexa-1,4-diene ring (Scheme 4). However, for certain synthetic applications, it would be desirable to utilize benzoic acid itself. The chemistry of chiral benzamide 12 (X = SiMes) was investigated to provide access to non-racemic 4,4-disubstituted cyclohex-2-en-l-ones 33 (Scheme 8). 9 Alkylation of the enolate obtained from the Birch reduction of 12 (X = SiMes) gave cyclohexa-1,4-dienes 32a-d with diastereoselectivities greater than 100 1 These dienes were efficiently converted in three steps to the chiral cyclohexenones 33a-d. [Pg.4]


See other pages where Asymmetric desymmetrization is mentioned: [Pg.93]    [Pg.210]    [Pg.93]    [Pg.210]    [Pg.51]    [Pg.229]    [Pg.243]    [Pg.247]    [Pg.257]    [Pg.136]    [Pg.233]    [Pg.68]    [Pg.232]    [Pg.174]    [Pg.91]    [Pg.854]    [Pg.214]    [Pg.214]    [Pg.489]    [Pg.514]    [Pg.160]    [Pg.242]    [Pg.187]    [Pg.92]    [Pg.92]    [Pg.146]   
See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Desymmetrization

Desymmetrizations asymmetric

© 2024 chempedia.info