Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane discussions

Under certain conditions of temperature and pressure, and in the presence of free water, hydrocarbon gases can form hydrates, which are a solid formed by the combination of water molecules and the methane, ethane, propane or butane. Hydrates look like compacted snow, and can form blockages in pipelines and other vessels. Process engineers use correlation techniques and process simulation to predict the possibility of hydrate formation, and prevent its formation by either drying the gas or adding a chemical (such as tri-ethylene glycol), or a combination of both. This is further discussed in SectionlO.1. [Pg.108]

Protoiiation (and protolysis) of alkanes is readily achieved with superacids. The protonation of methane itself to CH5, as discussed earlier, takes place readily. [Pg.163]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Flame or Partial Combustion Processes. In the combustion or flame processes, the necessary energy is imparted to the feedstock by the partial combustion of the hydrocarbon feed (one-stage process), or by the combustion of residual gas, or any other suitable fuel, and subsequent injection of the cracking stock into the hot combustion gases (two-stage process). A detailed discussion of the kinetics for the pyrolysis of methane for the production of acetylene by partial oxidation, and some conclusions as to reaction mechanism have been given (12). [Pg.386]

The second CO2 removal is conducted using the same solvent employed in the first step. This allows a common regeneration stripper to be used for the two absorbers. The gases leaving the second absorption step stiU contain some 0.25—0.4% CO and 0.01—0.1% CO2 and so must be methanated as discussed earlier. The CO, CO2, and possibly small amounts of CH, N2, and Ar can also be removed by pressure-swing adsorption if desired. [Pg.423]

Methanol to Ethylene. Methanol to ethylene economics track the economics of methane to ethylene. Methanol to gasoline has been flilly developed and, during this development, specific catalysts to produce ethylene were discovered. The economics of this process have been discussed, and a catalyst (Ni/SAPO 34) with almost 95% selectivity to ethylene has been claimed (99). Methanol is converted to dimethyl ether, which decomposes to ethylene and water the method of preparation of the catalyst rather than the active ingredient of the catalyst has made the significant improvement in yield (100). By optimizing the catalyst and process conditions, it is claimed that yields of ethylene, propylene, or both are maximized. This is still in the bench-scale stage. [Pg.443]

Certain substituted o-nitrotoluenes can be induced to cyclize, forming 2,1-benzisoxazoles. Bis(2-nitrophenyl)methane when irradiated gave 3-(o-nitrophenyl)-2,l-benzisoxazole. The possible intermediates including a biradical were discussed (74TL4359). 3-(o-Nitrophenyl)-2,1-benzisoxazole was prepared by the acid cyclization of bis(2-nitrophenyl)methanol (Scheme 178) (65RRC1035>. [Pg.121]

As discussed in Sec. 4, the icomplex function of temperature, pressure, and equilibrium vapor- and hquid-phase compositions. However, for mixtures of compounds of similar molecular structure and size, the K value depends mainly on temperature and pressure. For example, several major graphical ilight-hydrocarbon systems. The easiest to use are the DePriester charts [Chem. Eng. Prog. Symp. Ser 7, 49, 1 (1953)], which cover 12 hydrocarbons (methane, ethylene, ethane, propylene, propane, isobutane, isobutylene, /i-butane, isopentane, /1-pentane, /i-hexane, and /i-heptane). These charts are a simplification of the Kellogg charts [Liquid-Vapor Equilibiia in Mixtures of Light Hydrocarbons, MWK Equilibnum Con.stants, Polyco Data, (1950)] and include additional experimental data. The Kellogg charts, and hence the DePriester charts, are based primarily on the Benedict-Webb-Rubin equation of state [Chem. Eng. Prog., 47,419 (1951) 47, 449 (1951)], which can represent both the liquid and the vapor phases and can predict K values quite accurately when the equation constants are available for the components in question. [Pg.1248]

Recovery of Riologieal Conversion Products Biological conversion produces that can be derived from solid wastes include compost, methane, various proteins and alcohols, and a variety of other intermediate organic compounds. The principal processes that have been used are reported in Table 25-64. Composting and anaerobic digestion, the two most highly developed processes, are considered further. The recovery of gas from landfills is discussed in the portion of this sec tion dealing with ultimate disposal. [Pg.2242]

A number of biological processes result in the marine production of gases that have a greenhouse role, similar to water vapour and COj. In low oxygen environments, of the sort discussed in the next section, methane is produced by anaerobic bacterial decay ... [Pg.23]

Some of these compounds could be considered as dietary additives, but various other terms, including pesticides, can also be used. They can have beneficial effects on the environment and this aspect will be discussed later. The ionophore monensin, which is an alicyclic polyether (Figure 1), is a secondary metabolite of Streptomyces and aids the prevention of coccidiosis in poultry. Monensin is used as a growth promoter in cattle and also to decrease methane production, but it is toxic to equine animals. " Its ability to act as an ionophore is dependent on its cyclic chelating effect on metal ions. ° The hormones bovine somatotropin (BST) and porcine somatotropin (PST), both of which are polypeptides, occur naturally in lactating cattle and pigs, respectively, but can also be produced synthetically using recombinant DNA methods and administered to such animals in order to increase milk yields and lean meat production. "... [Pg.87]

The models of Matranga, Myers and Glandt [22] and Tan and Gubbins [23] for supercritical methane adsorption on carbon using a slit shaped pore have shown the importance of pore width on adsorbate density. An estimate of the pore width distribution has been recognized as a valuable tool in evaluating adsorbents. Several methods have been reported for obtaining pore size distributions, (PSDs), some of which are discussed below. [Pg.282]

The azo compounds A and B were prepared and the thermal and photochemical behavior of these materials was investigated. The results are summarized in the equations below. Discuss how these results m relate to the photochemical di-rc-methane rearrangement. (See Section 12.1.4 for some indications of the reactivity of... [Pg.787]

The liquids that are separated from the gas stream in the first separator may be flowed directly to a tank or may be stabilized in some fashion. As was discussed in Chapter 2 of Volume 1, these liquids contain a large percentage of methane and ethane, which will flash to gas in the tank. This lowers the partial pressure of all other components in the tank and increases their tendency to flash to vapors. The process of increasing the amount of intermediate (C3 to C5) and heavy (C + ) components in the liquid phase is called stabilization. In a gas field this process is called condensate stabilization and in an oil field it is called crude stabilization. [Pg.130]

However, we also need to discuss how the attractive interactions between species can be included in the theory of partly quenched systems. These interactions comprise an intrinsic feature of realistic models for partially quenched fluid systems. In particular, the model for adsorption of methane in xerosilica gel of Kaminsky and Monson [41] is characterized by very strong attraction between matrix obstacles and fluid species. Besides, the fluid particles attract each other via the Lennard-Lones potential. Both types of attraction (the fluid-matrix and fluid-fluid) must be included to gain profound insight into the phase transitions in partly quenched media. The approach of Ford and Glandt to obtain the chemical potential utilizing... [Pg.304]

Adsorption of hard sphere fluid mixtures in disordered hard sphere matrices has not been studied profoundly and the accuracy of the ROZ-type theory in the description of the structure and thermodynamics of simple mixtures is difficult to discuss. Adsorption of mixtures consisting of argon with ethane and methane in a matrix mimicking silica xerogel has been simulated by Kaminsky and Monson [42,43] in the framework of the Lennard-Jones model. A comparison with experimentally measured properties has also been performed. However, we are not aware of similar studies for simpler hard sphere mixtures, but the work from our laboratory has focused on a two-dimensional partly quenched model of hard discs [44]. That makes it impossible to judge the accuracy of theoretical approaches even for simple binary mixtures in disordered microporous media. [Pg.306]

The ability of C to catenate (i.e. to form bonds to itself in compounds) is nowhere better illustrated than in the compounds it forms with H. Hydrocarbons occur in great variety in petroleum deposits and elsewhere, and form various homologous series in which the C atoms are linked into chains, branched chains and rings. The study of these compounds and their derivatives forms the subject of organic chemistry and is fully discussed in the many textbooks and treatises on that subject. The matter is further considered on p. 374 in relation to the much smaller ability of other Group 14 elements to form such catenated compounds. Methane, CH4, is the archetype of tetrahedral coordination in molecular compounds some of its properties are listed in Table 8.4 where they are compared with those of the... [Pg.301]

The simple methyl compounds do indeed contain methyl groups, e.g., methylthiazoles exist as such and not in the methylene form."" The structures of compounds of the pyrophthalone type containing a benzimidazole and benzthiazole nucleus, e.g. 228, have been discussed. Bis (benzimidazolyl) methanes (229) absorb light in the... [Pg.80]

Secondary raw materials, or intermediates, are obtained from natural gas and crude oils through different processing schemes. The intermediates may be light hydrocarbon compounds such as methane and ethane, or heavier hydrocarbon mixtures such as naphtha or gas oil. Both naphtha and gas oil are crude oil fractions with different boiling ranges. The properties of these intermediates are discussed in Chapter 2. [Pg.1]

Natural gas and crude oils are the main sources for hydrocarbon intermediates or secondary raw materials for the production of petrochemicals. From natural gas, ethane and LPG are recovered for use as intermediates in the production of olefins and diolefms. Important chemicals such as methanol and ammonia are also based on methane via synthesis gas. On the other hand, refinery gases from different crude oil processing schemes are important sources for olefins and LPG. Crude oil distillates and residues are precursors for olefins and aromatics via cracking and reforming processes. This chapter reviews the properties of the different hydrocarbon intermediates—paraffins, olefins, diolefms, and aromatics. Petroleum fractions and residues as mixtures of different hydrocarbon classes and hydrocarbon derivatives are discussed separately at the end of the chapter. [Pg.29]

As a constituent of natural gas, ethane is normally burned with methane as a fuel gas. Ethane s relation with petrochemicals is mainly through its cracking to ethylene. Ethylene is the largest end use of ethane in the U.S. while it is only 5% in Western Europe. Chapter 3 discusses steam cracking of ethane. [Pg.31]

Synthesis gas consists of a nonhydrocarhon mixture (H2,CO) ohtain-ahle from more than one source. It is included in this chapter and is further noted in Chapter 5 in relation to methane as a major feedstock for this mixture. This chapter discusses the use of synthesis gas obtained from coal gasification and from different petroleum sources for producing gaseous as well as liquid hydrocarbons (Fischer Tropsch synthesis). [Pg.111]

Chapter 5 discusses chemicals derived directly or indirectly from methane. Because synthesis gas is the main intermediate from methane. [Pg.403]

Finally, the energy available from the above reaction might be used to operate a fuel cell such as those involved in the space program. In that case, as much as 818 kj/mol of useful electrical work could be obtained relatively litde heat is evolved. Summarizing this discussion in terms of an energy balance (per mole of methane reacting) ... [Pg.216]


See other pages where Methane discussions is mentioned: [Pg.323]    [Pg.158]    [Pg.1998]    [Pg.17]    [Pg.197]    [Pg.323]    [Pg.158]    [Pg.1998]    [Pg.17]    [Pg.197]    [Pg.723]    [Pg.1075]    [Pg.99]    [Pg.134]    [Pg.1268]    [Pg.32]    [Pg.227]    [Pg.443]    [Pg.42]    [Pg.293]    [Pg.157]    [Pg.111]    [Pg.35]    [Pg.1268]    [Pg.18]    [Pg.2]    [Pg.169]    [Pg.206]    [Pg.226]    [Pg.10]    [Pg.35]    [Pg.89]   
See also in sourсe #XX -- [ Pg.273 ]




SEARCH



© 2024 chempedia.info