Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylates Specifications

Acrylic Macromers. Thus far we have shown applications of SFC to the characterizations of monomers and crosslinkers. The next couple applications will focus upon the analysis of oligomeric methacrylates, specifically methacrylate macromers. Methacrylate macromers are frequently used as building blocks for larger architecturally designed polymers. Unfortunately, macromers far exceed the capability of GC and do not possess a chromophore for HPLC analysis. Hatada et. al. has used packed column SFC to analyzed the stereoisomers of oligomeric methylmethacrylate (MMA) prepared by anionic polymerization (13). [Pg.297]

The combination of durability and clarity and the ability to tailor molecules relatively easily to specific applications have made acryflc esters prime candidates for numerous and diverse applications. At normal temperatures the polyacrylates are soft polymers and therefore tend to find use in applications that require flexibility or extensibility. However, the ease of copolymerizing the softer acrylates with the harder methacrylates, styrene, acrylonitrile, and vinyl acetate, allows the manufacture of products that range from soft mbbers to hard nonfilm-forming polymers. [Pg.171]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

The white cell adsorption filter layer is typically of a nonwoven fiber design. The biomaterials of the fiber media are surface modified to obtain an optimal avidity and selectivity for the different blood cells. Materials used include polyesters, eg, poly(ethylene terephthalate) and poly(butylene terephthalate), cellulose acetate, methacrylate, polyamides, and polyacrylonitrile. Filter materials are not cell specific and do not provide for specific filtration of lymphocytes out of the blood product rather than all leukocytes. [Pg.523]

Monomers. A wide variety of monomers can be used, and they are chosen on the basis of cost and abiUty to impart specific properties to the final product. Water solubiUties of iadustriaHy important monomers are shown ia Table 1 (38). The solubiUty of the monomer ia water affects the physical chemistry of the polymerization. Functional monomers like methacrylic and acryUc acid, infinitely soluble ia water, are also used. These monomers impart long-term shelf stabiUty to latices by acting as emulsifiers. The polymerization behavior of some monomers, such as methacrylic acid, as well as the final latex properties are iafiuenced by pH. For optimum results with these acids, polymerization is best performed at a pH of ca 2. After polymerization, the latex is neutralized to give adequate shelf stabiUty at tractable viscosities. [Pg.24]

Electrical Properties. Poly(methyl methacrylate) has specific electrical properties that make it unique (Table 4). The surface resistivity of poly(methyl methacrylate) is higher than that of most plastic materials. Weathering and moisture affect poly(methyl methacrylate) only to a minor degree. High resistance and nontracking characteristics have resulted in its use in high voltage appHcations, and its excellent weather resistance has promoted the use of poly(methyl methacrylates) for outdoor electrical appHcations (22). [Pg.261]

Synthetic. The main types of elastomeric polymers commercially available in latex form from emulsion polymerization are butadiene—styrene, butadiene—acrylonitrile, and chloroprene (neoprene). There are also a number of specialty latices that contain polymers that are basically variations of the above polymers, eg, those to which a third monomer has been added to provide a polymer that performs a specific function. The most important of these are products that contain either a basic, eg, vinylpyridine, or an acidic monomer, eg, methacrylic acid. These latices are specifically designed for tire cord solutioning, papercoating, and carpet back-sizing. [Pg.253]

Specifically MSA has been found to be more effective than -toluenesulfonic acid and sulfuric acid in preparing dioctyl phthalate (405). A U.S. patent also discloses its use to prepare light-colored fatty esters (406). It is also important as a catalyst to prepare acrylates, methacrylates, adipates, phthalates, trimeUitates, thioglycolates, and other esters. [Pg.154]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
Comparison of Table 5.4 and 5.7 allows the prediction that aromatic oils will be plasticisers for natural rubber, that dibutyl phthalate will plasticise poly(methyl methacrylate), that tritolyl phosphate will plasticise nitrile rubbers, that dibenzyl ether will plasticise poly(vinylidene chloride) and that dimethyl phthalate will plasticise cellulose diacetate. These predictions are found to be correct. What is not predictable is that camphor should be an effective plasticiser for cellulose nitrate. It would seem that this crystalline material, which has to be dispersed into the polymer with the aid of liquids such as ethyl alcohol, is only compatible with the polymer because of some specific interaction between the carbonyl group present in the camphor with some group in the cellulose nitrate. [Pg.88]

The successful development of eye contact lenses led in turn to a demand for soft contact lenses. Such a demand was eventually met by the preparation of copolymers using a combination of an acrylic ester monomer such as methyl methacrylate, a cross-linkable monomer such as a dimethacrylate, and a monomer whose homopolymer is soluble or highly swollen in water such as N-vinyl pyrrolidone. Such copolymers swell in water (hence the term hydrophilic), the degree of swelling being controlled by the specific type and amount of the monomers used. In use the lens is swollen to equilibrium in water, a typical soft lens having a water content of about 75%. [Pg.420]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

Isocyanates can be added to solvent-borne CR adhesive solutions as a two-part adhesive system. This two-part adhesive system is less effective with rubber substrates containing high styrene resin and for butadiene-styrene block (thermoplastic rubber) copolymers. To improve the specific adhesion to those materials, addition of a poly-alpha-methylstyrene resin to solvent-borne CR adhesives is quite effective [76]. An alternative technique is to graft a methacrylate monomer into the polychloroprene [2]. [Pg.664]

Even the earliest reports discuss the use of components such as polymer syrups bearing carboxylic acid functionality as a minor component to improve adhesion [21]. Later, methacrylic acid was specifically added to adhesive compositions to increase the rate of cure [22]. Maleic acid (or dibasic acids capable of cyclic tautomerism) have also been reported to increase both cure rate and bond strength [23]. Maleic acid has also been reported to improve adhesion to polymeric substrates such as Nylon and epoxies [24]. Adducts of 2-hydroxyethyl methacrylate and various anhydrides (such as phthalic) have also been reported as acid-bearing monomers [25]. Organic acids have a specific role in the cure of some blocked organoboranes, as will be discussed later. [Pg.830]

TABLE 16.9 Producers (TosoHaas) Specification of Fractionation Ranges of Ethylene Glycol/Methacrylate Copolymer-Based TSK PW Gels... [Pg.491]

Problems with adsorption onto the packing material are more common in aqueous GPC than in organic solvents. Adsorption onto the stationary phase can occur even for materials that are well soluble in water if there are specific interactions between the analyte and the surface. A common example of such an interaction is the analysis of pEG on a silica-based column. Because of residual silanols on the silica surface, hydrogen bonding can occur and pEG cannot be chromatographed reliably on silica-based columns. Eikewise, difficulties are often encountered with polystyrenesulfonate on methacrylate-based columns. [Pg.556]

For partially crystalline ionomers, such as those based on copolymers of ethylene and methacrylic acid, even time or aging at room temperature can have an effect on mechanical properties. For example, upon aging at 23°C, the modulus of the acid form of the copolymer increased 28%, while in the ionomer form, the increase ranged up to 130%, with the specific gain in modulus depending on the degree of conversion and on the counterion that was present [17]. [Pg.149]

The theory of radiation-induced grafting has received extensive treatment. The direct effect of ionizing radiation in material is to produce active radical sites. A material s sensitivity to radiation ionization is reflected in its G value, which represents the number of radicals in a specific type (e.g., peroxy or allyl) produced in the material per 100 eV of energy absorbed. For example, the G value of poly(vinyl chloride) is 10-15, of PE is 6-8, and of polystyrene is 1.5-3. Regarding monomers, the G value of methyl methacrylate is 11.5, of acrylonitrile is 5.6, and of styrene is >0.69. [Pg.508]

In the second step, methacrolein is oxidized to methacrylic acid at a relatively lower temperature range of 250-350°C. A molybdenum-supported compound with specific promoters catalyzes the oxidation. [Pg.250]

The endopolygalacturonase obtained from a Kluyveromyces marxianus culture broth was purified through the addition of specifically designed core-shell microspheres consisting of an inner polystyrene core and an outer shell constituted by a poly(methacrylic acid-co-ethylacrylate) statistical copolymer. These microspheres were previously found very effective in purifying the pectinlyase within a commercial pectinase sample [15]. [Pg.977]

Likewise, poly (methyl methacrylate) and polyfvinylidene fluoride), the chemical structures of which are shown in Fig. 10.2, make a miscible blend because of the strong specific interactions between the oxygen atoms on the methacrylate and the fluoride group in the vinylidene fluoride group. [Pg.203]


See other pages where Methacrylates Specifications is mentioned: [Pg.416]    [Pg.464]    [Pg.129]    [Pg.207]    [Pg.276]    [Pg.73]    [Pg.248]    [Pg.249]    [Pg.259]    [Pg.259]    [Pg.420]    [Pg.430]    [Pg.493]    [Pg.516]    [Pg.43]    [Pg.73]    [Pg.433]    [Pg.412]    [Pg.416]    [Pg.1035]    [Pg.17]    [Pg.423]    [Pg.200]    [Pg.539]    [Pg.117]    [Pg.427]    [Pg.310]    [Pg.122]    [Pg.290]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Methacrylic acid polymerization specificity

Methyl methacrylate specificity

Site-Specific Polymerization of Methacrylate Monomers

© 2024 chempedia.info